1 Continuous functions on metric spaces

Definition 1.1. (Continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then f is continuous at a point $x \in \mathbb{R}$ if \ldots

The function f is called continuous if it is continuous at every point $x \in \mathbb{R}$.
Rephrased:

How can we generalize this definition to general metric spaces?
Definition 1.2. (Continuous functions on metric spaces.) Let (X, d_{X}) and (Y, d_{Y}) be metric spaces. Let $f: X \rightarrow Y$ be a function. Then f is continuous at a point $x \in X$ if \ldots

The function f is called continuous if it is continuous at every point $x \in X$.
Rephrased:

Notation: Let $f: X \rightarrow Y$ be a function.
For a subset $A \subseteq X$, the image of A is the set $f(A)=\{f(a) \mid a \in A\}$, a subset of Y.
For a subset $B \subseteq Y$, the preimage of B is the set $f^{-1}(B)=\{x \mid f(x) \in B\}$, a subset of X.
This definition makes sense (and we use the notation $f^{-1}(B)$) even when f is not invertible.

In-class Exercises

1. In this question, we will prove the following result:

Theorem (Continuous functions.) Let $\left(X, d_{X}\right)$ and (Y, d_{Y}) be metric spaces, and let $f: X \rightarrow Y$ be a function. Then f is continuous if and only if, given any open set $U \subseteq Y$, its preimage $f^{-1}(U) \subseteq X$ is open.
(a) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, and let $f: X \rightarrow Y$ be a continuous function. Suppose that $U \subseteq Y$ is an open set. Prove that $f^{-1}(U)$ is open.
(b) Suppose that f is a function with the property that, for every open set $U \subseteq Y$, the preimage $f^{-1}(U)$ is an open set in X. Show that f is continuous.
2. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be continuous functions between metric spaces. Show that the composite

$$
g \circ f: X \rightarrow Z
$$

is continuous. Hint: With our new criterion for continuity, this argument can be quite quick!
3. (Optional) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. A function $f: X \rightarrow Y$ is called an isometric embedding if it is "distance-preserving" in the sense that

$$
d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right) \quad \text { for all } x_{1}, x_{2} \in X
$$

(a) Give an intuitive description, with pictures, of what it means for a map to be an isometric embedding.
(b) Show that an isometric embedding is continuous.
(c) Show that an isometric embedding is always injective.
(d) Show that map

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto(x, 0)
\end{aligned}
$$

is an isometric embedding of \mathbb{R} into \mathbb{R}^{2} (each with the Euclidean metric).
(e) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by the map $f(x)=(x, m x+b)$ for $m, b \in \mathbb{R}$, so f maps the real line to the graph of the function $m x+b$. For which values of m and b is this an isometric embedding of Euclidean spaces?
(f) For functions $f(x)=(x, m x+b)$ that are not isometric embeddings, can you find a different parameterization of this line that is an isometric embedding? In other words, can you find an isometric embedding $g: \mathbb{R} \rightarrow \mathbb{R}^{2}$ whose image is the set $\{(x, m x+b) \mid x \in \mathbb{R}\}$?
(g) Show that the image of any isometric embedding from \mathbb{R} into \mathbb{R}^{2} must be a straight line.
(h) Let $X=\{a, b, c\}$ be a 3 -point set. Find examples of metrics on X so that the resulting metric space can and cannot be isometrically embedded in Euclidean space \mathbb{R}^{2}. Can you find necessary and sufficient conditions on the metric on X to guarantee the existence of an isometric embedding of X into \mathbb{R}^{2} ?

