
Math 592 Homework #2 Friday 5 February 2021 at 8pm

Terms and concepts covered: Categories; objects; morphisms; examples. Monic and epic morphisms. Co-
variant / contravariant functors. Universal property. Free groups: construction and universal property.
Path, homotopy of paths, composition of paths. Reparameterization. Loops, basepoint, fundamental group
π1(X,x0) of X based at x0.

Corresponding reading: Any reference on basic category theory (like Wikipedia or Tai-Danae Bradley’s
blog). Hatcher Ch 1.1, “Paths and Homotopy”,“Fundamental group of the circle”. )

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. (Monic and epic morphisms).

(a) Consider the category of sets, the category of abelian groups, and the category of topological
spaces. Prove that in these categories, a morphism is monic if and only if it is a injective map.

(b) Consider the category of sets, the category of abelian groups, and the category of topological
spaces. Prove that in these categories, a morphism is epic if and only if it is a surjective map.

(c) Prove that in the category of rings, the map Z→ Q is an epic morphism that is not surjective.

2. Definition (Isomorphism). Let C be a category. A morphism f : X → Y in C is an isomor-
phism if there exists a morphism g : Y → X in C such that f ◦ g = IdY and g ◦ f = IdX . Then
we write g = f−1, and we say that the objects X and Y are isomorphic.

(a) Verify that this definition is agrees with your notion of “isomorphism” in every context you have
encountered it.

(b) Recall that the homotopy category hTop is the category of topological spaces and homotopy classes of
continuous maps. Verify that an isomorphism in this category is precisely a homotopy equivalence.

(c) Verify that ”isomorphism” is an equivalence relation on objects in C .

(d) Let C be a category containing objects A and B, and let F be a functor F : C → D . Show that if A
and B are isomorphic objects of C , then F (A) and F (B) will be isomorphic objects of D .

3. (Groups as categories). Given a group G, define a category G with a single object F and morphisms
HomG (F,F) = {g | g ∈ G}. The composition law is given by the group operation.

(a) Show that a function between groups G → H is a group homomorphism if and only if the corre-
sponding map between categories G →H is a functor.

(b) (For those who have studied group representations). For a field k, let k–vect be the category of
k-vector spaces and k-linear maps. Show that the definition of a functor from G to k–vect is equiv-
alent to the definition of a linear representation of G over k.

4. (Power set functors). Let f Set denote the category of finite sets and all functions between sets. Let
P : f Set→ f Set be the function that takes a finite set A to its power set P(A), the set of all subsets of A.
If f : A → B is a function of finite sets, let P(f) : P(A) → P(B) be the function that takes a subset
U ⊆ A to the subset f(U) ⊆ B.

(a) Show that P is a covariant functor.

(b) What if we had instead defined P(f) : P(B) → P(A) to take a subset U ⊆ B to its preimage
f−1(U) ⊆ A under f?

5. (Open subsets functor) Let Top be the category of topological spaces and continuous maps. Let Set be
the category of sets and all functions of sets. Define a contravariant functor O : Top → Set that takes a
topological space X to its collection O(X) of open subsets. How should we define O on morphisms to
make it well-defined and functorial?
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6. (More adjoints). Let Top be the category of topological spaces and continuous maps. Let Set be the
category of sets and all functions of sets. Let F be the ”forgetful map”

F : Top −→ Set

that takes a space X to its underlying set. Define maps

I,D : Set −→ Top

so that for a set S, D(S) is the set S with the discrete topology, and I(S) is the set S with the indiscrete
topology. Prove that there are bijections

HomSet(A,F(X)) ∼= HomTop(D(A), X)

and
HomSet(F(X), A) ∼= HomTop(X, I(A)).

It turns out that these bijections are ”natural”, so this result shows that D is a left adjoint to F , and I is
the right adjoint to F .

7. (Constructing the free group). In class, we constructed the free group FS on a set S. Verify that our
construction does indeed satisfy the universal property of the free group.

8. (Free abelian groups). Recall the universal property of the free group FS on a set S: given any group G
and any map of sets f : S → G, the map f extends uniquely to a group homomorphism f : F (S)→ G.
In other words, there is a unique homomorphism f making the following diagram commute.

S

��

f // G

FS

∃! f

>>

(a) Consider the same universal property in the category of abelian groups (so nowGmust be abelian).
Show that the universal property defines the free abelian group on S, that is, FS ∼=

⊕
S Z.

(b) Why doesn’t the free abelian group on S satisfy the universal property in the category of groups?

9. (Homotopies of paths define an equivalence relation). Let X be a space, and x0, x1 ∈ X . Consider all
paths γ : I → X satisfying γ(0) = x0 and γ(1) = x1. Show that the relation of being path homotopic (ie,
homotopic rel {0, 1}) is an equivalence relation on these paths.

10. (Homotopy of paths respects composition of paths).
(a) Show that homotopy of paths is compatible with composition of paths. In other words, suppose

we have points x0, x1, x2 in a space X . Suppose that paths α and α′ from x0 to x1 are homotopic
rel {0, 1}, and suppose that paths β and β′ from x1 to x2 are homotopic rel {0, 1}. Verify that the
paths α · β and α′ · β′ from x0 to x2 are homotopic rel {0, 1}.

(b) What would happen if we just considered the paths α and β up to homotopy (instead of homotopy
rel {0, 1})? Would homotopy still respect composition of paths?

11. (Loop spaces). For a topological spaceX with basepoint x0, let ΩX denote the set of loops inX based at
x0. The loop space ΩX has a binary operation given by composition of loops. Explain why (in general)
ΩX fails to be a group with this operation, by considering whether each of the associativity, identity,
and inverse axioms will hold on the level of loops (in contrast to “loops up to path homotopy”).

12. (Paths in Rn).
(a) Let γ : I → Rn be a path from x0 to x1. Use the straight-line homotopy to show that γ is homotopic

rel {0, 1} to any other path in Rn from x0 to x1.
(b) Deduce that π1(Rn, 0) is the trivial group.
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Assignment questions

(Hand these questions in!)

1. (Coproducts). Let C be a category with objects X and Y . The coproduct of X and Y (if it exists) is an
object X

∐
Y in C with maps fx : X → X

∐
Y and fy : Y → X

∐
Y satisfying the following universal

property: whenever there is an object Z with maps gx : X → Z and gy : Y → Z, there exists a unique
map u : X

∐
Y → Z that makes the following diagram commute:

Z

X

gx

;;

fx

// X
∐
Y

∃!u

OO

Y

gy

bb

fy

oo

(a) Let X and Y be objects in C. Show that, if the coproduct (X
∐
Y, fx, fy) exists in C, then the uni-

versal property determines it uniquely up to unique isomorphism.
(b) Explain how to reinterpret this universal property as a bijection of sets

HomC(X
∐

Y, Z) ∼= HomC(X,Z)×HomC(Y,Z)

for objects X,Y, Z.
(c) Prove that in the category of sets, the coproduct X

∐
Y of sets X and Y is their disjoint union.

(d) Let Top be the category of topological spaces and continuous maps. The coproduct of X
∐
Y of

spaces X and Y is called the (topological) disjoint union. The underlying set is the disjoint union.
Describe the topology on the disjoint union that satisfies the universal property.

(e) Prove that in the category of abelian groups, the coproduct of groups X
∐
Y is X ⊕ Y with the

canonical inclusions of X and Y . In other words, this universal property defines the direct sum
operation on abelian groups.

(f) In the category Grp of groups, the univeral property for the coproduct does not define the direct
product operation. The coproductG

∐
H of groupsG andH is a construction called the free product

of G and H , and denoted G ∗ H . Determine how to construct the group G ∗ H along with maps
G→ G ∗H and H → G ∗H that satisfy the universal property.
Hint: The coproduct Z ∗ Z is the free group on two generators.

2. (Abelianization). Let Grp denote the category of groups and group homomorphisms, and let Ab de-
note the category of abelian groups and group homomorphisms. Define the abelianization Gab of a
group G to be the quotient of G by its commutator subgroup [G,G], the subgroup normally generated by
commutators, elements of the form ghg−1h−1 for all g, h ∈ G.

(a) Define a map of categories [−,−] : Grp → Grp that takes a group G to its commutator subgroup
[G,G], and a group morphism f : G → H to its restriction to [G,G]. Check that this map is well
defined (ie, check that f([G,G]) ⊆ [H,H]) and verify that [−,−] is a functor.

(b) Show that Gab is an abelian group. Show moreover that if G is abelian, then G = Gab.
(c) Show that the quotient mapG→ Gab satisfies the following universal property: Given any abelian

groupH and group homomorphism f : G→ H , there is a unique group homomorphism f : Gab →
H that makes the following diagram commute:

G

��

f // H

Gab
∃! f

==

This universal property shows that Gab is in a sense the “largest” abelian quotient of G.
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(d) Show that the map ab that takes a group G to its abelianization Gab can be made into a functor
ab : Grp→ Ab by explaining where it maps morphisms of groups f : G→ H , and verifying that it
is functorial.

(e) The category Ab is a subcategory of Grp. Define the functor A : Ab → Grp to be the inclusion
of this subcategory; A takes abelian groups and group homomorphisms in Ab to the same abelian
groups and the same group homomorphisms in Grp. Briefly explain why the universal property
in Part (c) can be rephrased as follows: Given groups G ∈ Grp and H ∈ Ab, there is a natural
bijection between the sets of morphisms:

HomGrp(G,A(H)) ∼= HomAb(Gab, H)

Remark: Since this bijection is “natural” (a condition we won’t formally define or check) it means
that A : Ab→ Grp and ab : Grp→ Ab are what we call a pair of adjoint functors.

3. Hint: These results are proved in Hatcher Ch 1.1. You may read their proofs there, but then put the
book away and write your solutions independently!

(a) (Reparameterization preserves homotopy class).
Definition (Reparameterization). Let γ : I → X be a path in a space X . A reparameteriza-
tion of γ is a path γ ◦ φ obtained by precomposing γ by a map φ : I → I such that φ(0) = 0
and φ(1) = 1.

Show that γ and any reparameterization γ ◦ φ are homotopic ref {0, 1}.
(b) (The fundamental group is a group). For a spaceX with basepoint x0, we defined the fundamental

group π1(X,x0) to be the group of loops inX based on x0 up to path homotopy, under composition
of paths. Complete our proof that this is a group, by verifying the following. Let c be the constant
loop at x0, and let γ, γ1, γ2, γ3 be any loops based at x0.
• Associativity: γ1 · (γ2 · γ3) is a reparameterization of (γ1 · γ2) · γ3.
• Identity: γ · c is a reparameterization of γ. (A similar argument shows c · γ ' γ).
• Inverses: γ · γ ' c, where γ(t) = γ(1− t). (A similar argument shows γ · γ ' c).

(c) (π1(X) is well-defined for path-connected X). Prove the following.
Theorem (Change of basepoint). Let X be a space, and let x0 and x1 be two points in X
connected by a path h. Then the change-of-basepoint map

π1(X,x1) −→ π1(X,x0)

[γ] 7−→ [h · γ · h]

is an isomorphism. Here, h is defined as the path h(s) = h(1− s).
Conclude that (up to isomorphism) the fundamental group of X does not depend on the choice of
basepoint, only on the choice of path component of the basepoint. If X is path-connected, it now
makes sense to refer to “the” fundamental group of X and write π1(X) for the abstract group.

4. The goal of this question is to prove this theorem.

Theorem (The fundamental group of S1). Let S1 denote the unit circle in R2. There is an
isomorphism

Φ : Z −→ π1

(
S1, (1, 0)

)
n 7−→ [ωn : t 7→ (cos(2πnt), sin(2πnt))].

Hint: Hatcher proves this result in Theorem 1.7, using an approach that is closely related but not iden-
tical to the one below. If you read Hatcher’s proof, please put the book away as you write your own
solutions.

Page 4



Math 592 Homework #2 Friday 5 February 2021 at 8pm

(a) Verify that Φ(m+ n) and Φ(m) · Φ(n) are homotopic, so Φ is a group homomorphism.

(b) Definition (Covering map). Let p : E → B be a continuous map of topological spaces.
The map p is called a covering map if every point b ∈ B has some neighbourhood Ub with
the following property. The preimage p−1(Ub) ⊆ E is the union of disjoint open sets {Vb,α}
in E such that for each α the restriction p|Vb,α is a homeomorphism from Vb,α to Ub. In this
case, E is called a covering space of B.

Prove that the map

p : R −→ S1

x 7−→ (cos(2πx), sin(2πx))

is a covering map.

(c) The following homotopy lifting property is a crucial feature of covering maps. We will prove it later
in the course.

Definition (Lift). Let p : E → B be a covering map, and let f : X → B be a continuous
map. A lift of f is a map f̃ : X → E such that p ◦ f̃ = f .

E

p

��
X

f
//

f̃
>>

B

Theorem (Covering maps have the homotopy lifting property). Let p : E → B be a
covering map, and let Ft : X × I → B be a homotopy of maps X → B. Then given any
lift F̃0 : X → E of F0, there exists a unique lift F̃t : X × I → E of Ft whose restriction to
t = 0 is the lift F̃0.

X × {0} ∼= X
F̃0 //

i

��

E

p

��
X × I

Ft

//

F̃t

∃!

99

B

Note that this theorem gives both existence and uniqueness of F̃t. Briefly explain why the theorem
implies the following two results.

(i) For each path γ : I → S1 starting at (1, 0) and each x ∈ p−1(1, 0) there is a unique lift γ̃ : I → R
starting at x .

(ii) Let Ft : I × I → S1 be a homotopy rel {0, 1} starting at (1, 0) ∈ S1. For each x ∈ p−1(1, 0),
there is a unique homotopy F̃t : I × I → R with F̃0 a path starting at x ∈ R.

(d) Explain why the homotopy lifting property implies that the lifted homotopy F̃t in (ii) must be a
homotopy rel {0, 1}. Hint: Consider the paths t 7→ Ft(0) and t 7→ Ft(1).

(e) Describe the path ω̃n : I → R starting at 0 ∈ R that lifts the loop

ωn : I −→ S1

t 7−→ (cos(2πnt), sin(2πnt)),

and describe the class of paths in R that are homotopic rel {0, 1} to ω̃n.

(f) Prove that Φ is surjective and injective, hence an isomorphism.
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Wellbeing

(This section is completely optional. This is a nudge to prioritize your wellbeing during the pandemic.)

1. (Health comes first). Prioritize your sleep, fitness, nutrition, and other health goals.

2. (Shared experiences). Sometime this week, arrange to share an activity with a friend or family member,
even if it is over the phone or Zoom. Go on walks at the same time, cook together, have a meal together,
watch the same TV show together. Or, if you cannot find time, just turn on Zoom as you quietly work
together.
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