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Math 592
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Jenny Wilson

Name:

Instructions: This exam has 4 questions for a total of 35 points.

The exam is closed-book. No books, notes, cell phones, calculators, or other devices are
permitted.

Fully justify your answers unless otherwise instructed. You may quote any results proved in
class, on a quiz, or on the homeworks without proof. Please include a complete statement
of the result you are quoting.

You have 60 minutes to complete the exam. If you finish early, consider checking your work
for accuracy.

Jenny is available to answer questions.

Question Points Score

1 4

2 4

3 15

4 12

Total: 35

Notation

• I = [0, 1] (closed unit interval)

• Dn = {x ∈ Rn | |x| ≤ 1} (closed unit n-disk)

• Sn = ∂Dn+1 = {x ∈ Rn+1 | |x| = 1}
(unit n-sphere)
(we may view S1 as the unit circle in C)

• S∞ =
⋃

n≥1 S
n with the weak topology

• Σg closed genus-g surface

• RPn real projective n-space

• CPn real complex n-space
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1. (4 points) A CW complex X consists of

• two vertices x and y

• three edges a, b, c, where a is a directed edge from x to y, b is a directed edge from
y to x, and c is a directed edge from y to y,

• two 2-cells A and B, where A is glued along the word ac2b and B is glued along
the word bac−1ba.

Compute the homology groups of X.

Solution. The cellular chain groups of X are

Cn(X) = 0 for n ≥ 3, C2(X) = Z{A,B}, C1(X) = Z{a, b, c}, C0(X) = Z{x, y}.

Thus our boundary maps are

∂2 : C2(X) −→ C1(X) ∂1 : C1(X) −→ C2(X)

Z{A,B} −→ Z{a, b, c} Z{a, b, c} −→ Z{x, y}
A 7−→ a+ b+ 2c a 7−→ y − x
B 7−→ 2a+ 2b− c b 7−→ x− y

c 7−→ y − y = 0

Then our chain complex is

0 C2(X) C1(X) C0(X) 0

ker(∂2) = 0 ker(∂1) = Z{a + b, c} ker(∂0) = Z{x, y}

im(∂3) = 0 im(∂2) = Z
{

a + b + 2c,
2a + 2b− c

}
im(∂1) = Z(y − x)

∂3 ∂2 ∂1 ∂0

We conclude (by performing changes-of-bases) that

H2(X) =
0

0
= 0 H1(X) =

Z{a+ b+ 2c, c}
Z{a+ b+ 2c, 5c}

∼= Z/5Z H0(X) =
Z{x, y − x}
Z{y − x}

∼= Z.

Alternate approach: compute the Smith normal form of the differentials and use our
formula for homology

∂2 =

1 2
1 2
2 −1

 , SNF(∂2) =

1 0
0 5
0 0

 , and ∂1 =

[
−1 1 0
1 −1 0

]
, SNF(∂1) =

[
1 0 0
0 0 0

]
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2. (4 points) Let F3 be the free group on 3 letters. Prove that every finite-index subgroup
of F3 is a free group of odd rank, and that every free group of odd rank at least 3 occurs
as a finite-index subgroup of F3.

Solution. We can identify F3 with the fundamental group of the wedge X = S1∨S1∨S1.
The space X is path-connected, and since it is a graph it is locally path-connected
and semi-locally simply-connected. Hence, by our classification of covering spaces, each
subgroup G of F3 is isomorphic to the fundamental group of a path-connected cover of
X. We proved that the index of the subgroup equals the number of sheets of the cover,
so in particular the finite-index subgroups G of F3 correspond to finite-sheeted covers of
X.

Let X̃ → X be a d-sheeted cover of X. We proved that a cover X̃ of a graph X is itself
a graph, and that if X has 1 vertex and 3 edges, then X̃ has d vertices and 3d edges.
A spanning tree in X̃ will contain all d vertices, and (d− 1) edges. We proved that the
fundamental group of a graph is free, with a free generator for each edge not contained
in our chosen spanning tree. Thus π1(X̃) is the free group of rank

3d− (d− 1) = 2d+ 1.

This rank is always odd, and as d ranges through the positive integers, 2d + 1 ranges
through all odd integers 3 and above.

To complete the problem, we must show that X has a d–sheeted cover for every d ≥ 1.
The identity map X → X is a one-sheeted cover. For d > 1, consider a surjective
homomorphism φd from F3 to the cyclic group Cd of order d (say, a map sending all
three free generators of F3 to any generator of Cd.) Then the kernel G of φd is an index-
d subgroup, and so corresponds to a d-sheeted cover, and we conclude that G ∼= F2d+1.
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3. Consider the following descriptions of hypothetical maps f . In each part, prove that no
such continuous map f exists.

(a) (2 points) The map f : S4 → CP2 is a homotopy equivalence.

Solution. If f were a homotopy equivalence, then for each n the induced map
f∗ : Hn(S4) → Hn(CP2) would be an isomorphism. However, we calculated that
H2(S

4) = 0 and H2(CP2) = Z.

(b) (3 points) Let Σ2 be the closed genus-2 surface. The map f : Σ2 → A is a retrac-
tion onto the circle A ⊆ Σ2 shown below. (Graphics credit: Salman Siddiqi)

Solution. Let ι : A → Σ2 be the inclusion of A. If f : Σ2 → A were a retraction,
then by definition f ◦ ι = idA, and by functoriality of homology the composite

H1(A)
ι∗−→ H1(Σ2)

f∗−→ H1(A)

would be the identity map on the group H1(A) = H1(S
1) ∼= Z. This is impossible,

however, because ι∗ : H1(A) → H1(Σ2) is the zero map. We can see this, for
example, since we see in the diagrams below that A (identified with an element
of π1(Σ2)) is the commutator [a1, a2] of the loops a1, a2, hence vanishes in the
abelianization H1(Σ2) of π1(Σ2).

a1

a2

a1 a1

a2
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(c) (2 points) Fix n ≥ 1. The map f : Sn → Sn is a map of degree 2 with no fixed point.

Solution. The Lefschetz fixed point theorem states that a self-map of a finite CW
complex can have no fixed points only if its Lefschetz number is zero. But f has
Lefschetz number

τ(f) =
n∑
k=0

(−1)k Trace{f∗ : Hk(S
n)→ Hk(S

n)}

= (−1)0(1) + (−1)n(2)

= 1± 2 6= 0

and therefore must have a fixed point.

Alternative Solution. We showed that if f has no fixed points, then

ft(x) =
(1− t)f(x)− tx
||(1− t)f(x)− tx||

is a homotopy from f to the antipodal map. Thus f has degree (−1)n+1 6= 2.

(d) (3 points) Let T be the torus. The map f : S2 → T is an isomorphism on degree-2
homology.

Solution. In brief: the map f lifts to the (contractible) universal cover R2 of T ,
so f induces the zero map on degree-2 homology (in fact, f is nullhomotopic).

Let us verify the details. We showed that the universal cover of the torus is the
plane R2, so let p : R2 → T denote this covering map. The sphere S2 is path-
connected and locally path-connected. Since S2 has trivial fundamental group, for
x ∈ S2 and ỹ ∈ p−1(f(x)) we must have containment

f∗(π1(S
2, x)) = 0 ⊆ p∗(π1(R2, ỹ)).

Thus our lifting criterion for covers implies that a lift f̃ : S2 → T exists, that is,
the map f factors f = p ◦ f̃ .

By functoriality of homology, then, the induced map f∗ on degree-2 homology factors
as a composite of maps

H2(S
2)

f̃∗−→ H2(R2)
p∗−→ H2(T )

But H2(R2) = 0 and H2(S
2) ∼= H2(T ) ∼= Z, so f∗ cannot be an isomorphism.
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(e) (2 points) Let X be a finite CW complex, and n ≥ 1. The map f : RP2n → X is a
d-sheeted covering map for some d > 1.

Solution. Since f is a covering map, we proved that the Euler characteristics of
RP2n and X must satisfy

χ(RP2n) = d χ(X)

But we computed χ(RP2n) = 1, so d must be 1.

(f) (3 points) Let X be a space, and n ≥ 1. The map f : CPn → X is a covering map
which is nullhomotopic.

Solution. We note that the space CPn is connected but not contractible; non-
contractibility follows (for example) since it has nonzero homology in degree 2n.
Thus the result follows from the following lemma.

Lemma. Let p : X̃ → X be a covering map with X̃ connected. Then p is
not nullhomotopic unless X̃ is contractible.

Proof: Suppose p : X̃ → X is a covering map. We have a commutative diagram

X̃

X̃ X

p

p

idX̃

Let Ft : X̃ → X be a homotopy from p to a constant map at some point x0 ∈ X.
By the homotopy lifting property of the covering map p, there is a lift F̃t.

X̃

X̃ × I X

p

Ft

F̃t

Since F1(X̃) = {x0}, F̃1(X̃) must be contained in the fibre p−1(x0). But X̃ is
connected and (by definition of a covering map) the fibre p−1(x0) is discrete, so
F̃1 must be a constant map. It follows that F̃t : X̃ → X̃ is a homotopy from the
identity to a constant map. Thus X̃ is contractible.
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4. (12 points) For each of the following statements: if the statement is true, write “True”.
If not, state a counterexample. No justification necessary.
Note: If the statement is false, you can receive partial credit for writing “False” without
a counterexample.

(a) Let X, Y be spaces, and A ⊆ X a subspace. Suppose f : X → Y is a homotopy
equivalence. Then f |A : A→ f(A) is a homotopy equivalence.

False. The analogous statement is true for homeomorphisms, but not homotopy
equivalences. Consider, for example, the constant map f : R2 → {∗}. Then f is a
homotopy equivalence, but if we restrict it to some non-contractible subspace of R2

such as the unit circle A = S1, the restriction f |A is not a homotopy equivalence.

(b) If A is a retract of X (not necessarily a deformation retract), then A and X are
homotopy equivalent.

False. For example, any point x ∈ X is a retract of X, but not every space X is
contractible. For example, take X to be the unit circle S1 in C, so the constant map
f : S1 → {1} is a retract, but X = S1 and A = {1} are not homotopy equivalent.

(c) Let A ⊆ X. If A is a deformation retract of X, then Hn(X,A) = 0 for all n.

True. Hint: If A is a deformation retract of X, then the inclusion A ↪→ X is a
homotopy equivalence and so induces isomorphisms on reduced homology groups.
The result then follows from the long exact sequence of a pair.

(d) Let F be a covariant functor from the category of topological spaces and contin-
uous maps, to the category of abelian groups and group homomorphisms. If f is
a homeomorphism of topological spaces, then F (f) is an isomorphism of abelian
groups.

True. Hint: Define an isomorphism f : X → Y in a category C by the existence
of an inverse morphism f−1 : Y → X in C satisfying f ◦ f−1 = idY and f−1 ◦ f =
idX . Then by definition of functoriality, all functors must map isomorphisms to
isomorphisms.
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(e) If f : Sn → Sn is not surjective, then it is nullhomotopic.

True. Hint: If there is a point x ∈ Sn not in the image of f , then f factors
through a map

Sn → Sn \ {x} → Sn.

Since Sn \ {x} ∼= Dn is contractible, f is nullhomotopic.

(f) If f : Rn+1 \ {0} → Rn+1 \ {0} is not surjective, then it is nullhomotopic.

False. For example, consider the map

f : Rn+1 \ {0} −→ Rn+1 \ {0}

x 7−→ x

||x||

with image the unit sphere Sn ( Rn+1 \ {0}. The map is f is homotopic to
the identity map via the straight-line homotopy. Since Sn is not contractible, the
identity map is not nullhomotopic.

(g) Suppose a space X is a union X = U ∪ V of contractible open subsets U and V .

Then H̃n(X) ∼= H̃n−1(U ∩ V ) for all n.

True. Hint: Consider the Mayer–Vietoris long exact sequence on reduced homol-
ogy associated to the decomposition X = U ∪ V .

(h) Let d be the local degree of a map f : Sn → Sn at a point x ∈ Sn. Then d must be
±1.

False. For example, view S2 as the Riemann sphere S2 = Ĉ = C ∪ {∞} and
consider the map

f : Ĉ −→ Ĉ

z 7−→
{
z3, z ∈ C
∞, z =∞

We proved on Homework 11 #2 that the local degree of this map at z = 0 is 3.
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(i) Let M be a closed, smoothly embedded submanifold of Rn, and let Rn/M be the

quotient collapsing M to a point. Then H̃k(Rn/M) ∼= H̃k−1(M) in each degree k.

True. Hint: The tubular neighbourhood theorem implies that (Rn,M) is a good
pair, so the result follows from the long exact sequence of a pair.

(j) There is no path-connected space X with universal cover X̃ satisfying H1(X̃) = Z2.

True. Hint: The fundamental group of the universal cover is trivial, and so its
abelianization H1(X̃) is trivial.

(k) There is no path-connected space X with universal cover X̃ satisfying H2(X̃) = Z2.

False. For example, the space S2 ∨ S2 is simply connected and is therefore its
own universal cover. It has homology H2(S

2 ∨ S2) ∼= H2(S
2)⊕H2(S

2) ∼= Z2.

(l) Let X be a simply connected, finite CW complex. If f : X → X is homotopic to
the identity, it must have a fixed point.

False. This would be true for a finite CW complex with nonzero Euler charac-
teristic, but the condition of being simply connected is not sufficient. For example,
S3 is simply connected and has a finite CW complex structure. Homework 11 #1
implies that the antipodal map S3 → S3 (or on any odd-dimensional sphere) is
homotopic to the identity map.
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