Name: ______ Score (Out of 4 points): 1. (4 points) Let <u>Set</u> be the category of sets and all functions. Let \mathscr{C} be a reasonably nice¹ category. Fix an object A in \mathscr{C} . Define a map $$\operatorname{Hom}_{\mathscr{C}}(A,-):\mathscr{C}\longrightarrow \underline{\operatorname{Set}} \\ B\longmapsto \operatorname{Hom}_{\mathscr{C}}(A,B)$$ We can extend this map to a map of morphisms $$\begin{split} \mathscr{C} &\longrightarrow \underline{\operatorname{Set}} \\ [f:B \to C] &\longmapsto [f_*: \operatorname{Hom}_{\mathscr{C}}(A,B) \to \operatorname{Hom}_{\mathscr{C}}(A,C)] \end{split}$$ to make it a covariant functor.² Explain how to define the map f_* , and verify that your construction is functorial. $^{^1}$ For set-theoretic reasons, we need $\mathscr C$ to be a *locally small category*. This holds for every category we will encounter. ²For each object A there is a **covariant** functor $\operatorname{Hom}_{\mathscr{C}}(A,-)$ and a **contravariant** functor $\operatorname{Hom}_{\mathscr{C}}(-,A)$. This question is about the first.