Name: _____ Score (Out of 4 points):

1. (4 points) Let <u>Set</u> be the category of sets and all functions. Let \mathscr{C} be a reasonably nice¹ category. Fix an object A in \mathscr{C} . Define a map

$$\operatorname{Hom}_{\mathscr{C}}(A,-): \mathscr{C} \longrightarrow \underline{\operatorname{Set}} \\ B \longmapsto \operatorname{Hom}_{\mathscr{C}}(A,B)$$

We can extend this map to a map of morphisms

$$\mathscr{C} \longrightarrow \underline{\operatorname{Set}}$$
$$[f: B \to C] \longmapsto [f_*: \operatorname{Hom}_{\mathscr{C}}(A, B) \to \operatorname{Hom}_{\mathscr{C}}(A, C)]$$

to make it a covariant functor.² Explain how to define the map f_* , and verify that your construction is functorial.

Solution. We define

$$f_*: \operatorname{Hom}_{\mathscr{C}}(A, B) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(A, C)$$
$$g \longmapsto f \circ g$$

To check that this map is functorial, we need to check two properties: that it respects identity and that it respects composition.

Suppose $id_B : B \to B$ is the identity morphism. Then

$$(id_B)_* : \operatorname{Hom}_{\mathscr{C}}(A, B) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(A, B)$$

 $g \longmapsto id_B \circ g = g$

 $A \xrightarrow{g} B$ $f_*(g) = f \circ g \xrightarrow{g} f$

so $(id_B)_*$ is the identity map on Hom_{\mathscr{C}}(A, B) as desired.

Let $f_1: B \to C$ and $f_2: C \to D$. Then $(f_2 \circ f_1)_*(g) = (f_2 \circ f_1) \circ g$ $= f_2 \circ (f_1 \circ g)$ $= (f_2)_*(f_1 \circ g)$ $= (f_2)_*((f_1)_*(g))$ $= ((f_2)_* \circ (f_1)_*)(g)$ D

so our functor respects composition.

¹For set-theoretic reasons, we need \mathscr{C} to be a *locally small category*. This holds for every category we will encounter.

²For each A there is a **covariant** functor $\operatorname{Hom}_{\mathscr{C}}(A, -)$: and a **contravariant** functor $\operatorname{Hom}_{\mathscr{C}}(-, A)$.