Name: _____ Score (Out of 3 points):

- 1. Let X and Y be path-connected, locally path-connected, semi-locally simply-connected. Let $p_X: \tilde{X} \to X$ and $p_Y: \tilde{Y} \to Y$ be their universal covers.
 - (a) (1 point) Explain why, for every continuous map $f: X \to Y$, there exists a continuous map $\tilde{f}: \tilde{X} \to \tilde{Y}$ that makes the following diagram commute.

$$\tilde{X} \xrightarrow{\tilde{f}} \tilde{Y}
\downarrow p_X \qquad \downarrow p_Y
X \xrightarrow{f} Y$$

(b) (1 point) Is the map \tilde{f} unique? Explain.

(c) (1 point) Consider the case that $X = S^1$ and $Y = S^1 \vee S^1$ as shown in Figure 1.

Figure 1: $Y = S^1 \vee S^1$

The universal cover of S^1 is \mathbb{R} , and the universal cover of $S^1 \vee S^1$ is shown in Figure 2.

Figure 2: The universal cover \tilde{Y} of $S^1 \vee S^1$

Let f be the constant-speed map that winds S^1 once (in the forward sense) around the loop a and then once (in the forward sense) around the loop b. Describe (informally) the corresponding map \tilde{f} (or the set of all possible maps \tilde{f}) from \mathbb{R} to the universal cover of $S^1 \vee S^1$.