Name: \qquad Score (Out of 3 points):

1. Let X and Y be path-connected, locally path-connected, semi-locally simply-connected. Let $p_{X}: \tilde{X} \rightarrow X$ and $p_{Y}: \tilde{Y} \rightarrow Y$ be their universal covers.
(a) (1 point) Explain why, for every continuous map $f: X \rightarrow Y$, there exists a continuous map $\tilde{f}: \tilde{X} \rightarrow \tilde{Y}$ that makes the following diagram commute.

(b) (1 point) Is the map \tilde{f} unique? Explain.
(c) (1 point) Consider the case that $X=S^{1}$ and $Y=S^{1} \vee S^{1}$ as shown in Figure 1.

Figure 1: $Y=S^{1} \vee S^{1}$
The universal cover of S^{1} is \mathbb{R}, and the universal cover of $S^{1} \vee S^{1}$ is shown in Figure 2.

Figure 2: The universal cover \tilde{Y} of $S^{1} \vee S^{1}$
Let f be the constant-speed map that winds S^{1} once (in the forward sense) around the loop a and then once (in the forward sense) around the loop b. Describe (informally) the corresponding map \tilde{f} (or the set of all possible maps \tilde{f}) from \mathbb{R} to the universal cover of $S^{1} \vee S^{1}$.

