Name: _____

Score (Out of 3 points):

- 1. Let X and Y be path-connected, locally path-connected, semi-locally simply-connected spaces. Let $p_X : \tilde{X} \to X$ and $p_Y : \tilde{Y} \to Y$ be their universal covers.
 - (a) (1 point) Explain why, for every continuous map $f: X \to Y$, there exists a continuous map $\tilde{f}: \tilde{X} \to \tilde{Y}$ that makes the following diagram commute.

$$\begin{array}{ccc} \tilde{X} & \stackrel{\tilde{f}}{\longrightarrow} \tilde{Y} \\ \downarrow^{p_X} & \downarrow^{p_Y} \\ X & \stackrel{f}{\longrightarrow} Y \end{array}$$

Choose a basepoint x_0 for X and $y_0 = f(x_0)$ for Y. Let $\tilde{x}_0 \in p_X^{-1}(x_0)$ and $\tilde{y}_0 \in p_Y^{-1}(y_0)$. We proved that the universal cover \tilde{X} is path-connected, and it is locally path-connected since it is locally homeomorphic to the locally path-connected space X. We can therefore apply our lifting theorem to the map

$$f \circ p_X : (X, \tilde{x_0}) \longrightarrow (Y, y_0).$$

We proved $\pi_1(\tilde{X}, \tilde{x_0}) = 0$, so the image of π_1 under $(f \circ p_X)_*$ must be contained in $(p_Y)_*(\pi_1(\tilde{Y}, \tilde{y_0}))$. Our lifting theorem therefore states that there is a lift $\tilde{f} : \tilde{X} \to \tilde{Y}$ of the map $f \circ p_X$ mapping $\tilde{y_0}$ to $\tilde{x_0}$.

The condition that \tilde{f} is a lift of $(f \circ p_X)$ is exactly the statement that $p_Y \circ \tilde{f} = f \circ p_X$, in other words, the square above commutes.

(b) (1 point) Is the map \tilde{f} unique? Explain.

The map \tilde{f} is not in general unique. We chose a basepoint x_0 for X, and fixed a basepoint $\tilde{x_0}$ for \tilde{X} . Then for every choice of preimage point $\tilde{y_0} \in p_Y^{-1}(f(x_0))$, there is a lift \tilde{f} mapping $\tilde{x_0}$ to $\tilde{y_0}$. By our uniqueness theorem, this single value of \tilde{f} will uniquely determine the function \tilde{f} .

(c) (1 point) Consider the case that $X = S^1$ and $Y = S^1 \vee S^1$ as shown in Figure 1.

Figure 1: $Y = S^1 \vee S^1$

The universal cover of S^1 is \mathbb{R} , and the universal cover of $S^1 \vee S^1$ is shown in Figure 2.

Figure 2: The universal cover \tilde{Y} of $S^1 \vee S^1$

Let f be the constant-speed map that winds S^1 once (in the forward sense) around the loop a and then once (in the forward sense) around the loop b. Describe (informally) the corresponding map \tilde{f} (or the set of all possible maps \tilde{f}) from \mathbb{R} to the universal cover of $S^1 \vee S^1$.

Observe that, in the composition $\mathbb{R} \to S^1 \to S^1 \vee S^1$, the interval $[n, n + \frac{1}{2}]$ winds around the (red) edge a and the interval $[n + \frac{1}{2}, n + 1]$ winds around the (blue) edge b for each $n \in \mathbb{N}$. We can compute the lift \tilde{f} using our usual technique for lifting paths.

There is a map \tilde{f} for every choice of vertex in the universal cover \tilde{Y} . Choose a vertex v, which we will make the image of 0. The map \tilde{f} must then map the interval $[0, \frac{1}{2}]$ homeomorphically to the (red) edge labelled a directed away from v, then the interval $[\frac{1}{2}, 1]$ homeomorphically to the (blue) edge labelled b directed away from the next vertex. Then map $[1, \frac{3}{2}]$ to the outgoing red edge, $[\frac{3}{2}, 2]$ to the outgoing blue edge, etc, alternating between an outgoing red edge on $[n, n + \frac{1}{2}]$ and an outgoing blue edge on $[n + \frac{1}{2}, n + 1]$ for each $n \in \mathbb{N}$.

Similarly, \tilde{f} must extend to the negative real line by travelling backwards along the incoming blue edge on $[-n - \frac{1}{2}, -n]$, then backwards along the incoming red edge on $[-n - 1, -n - \frac{1}{2}]$, for each $n \in \mathbb{N}$.