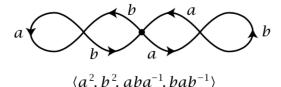
Name: _____ Score (Out of 6 points):

- 1. (6 points) Each of the following statements is either true or false. If it is true, write True and give a brief justification. If it is false, write False and give a brief justification or state a counterexample. You do not need to prove your counterexample. You may receive partial credit for correctly writing True or False with no justification.
 - (a) Every connected cover of the torus is regular.

True.

We proved that the (based) connected covers of the torus T are in bijection with subgroups of $\pi_1(T, x_0)$, and that the cover corresponding to a subgroup H is regular if and only if His normal in $\pi_1(T, x_0)$. Since $\pi_1(T, x_0)$ is abelian, all of its subgoups are normal.

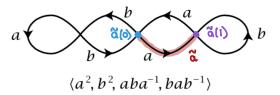
(b) Let \tilde{X} be the cover of $S^1 \vee S^1$ shown below. We adopt our usual convention of identifying the fundamental group of $S^1 \vee S^1$ based at the wedge point x_0 with the free group $F_{\{a,b\}}$ on a, b. We choose a basepoint $\tilde{x_0}$ for \tilde{X} (shown by a black dot) so that $H = p_*(\pi_1(\tilde{X}, x_0))$ is the subgroup of the free group on a, b freely generated by $a^2, b^2, aba^{-1}, bab^{-1}$.



Then the element $a \in F_{\{a,b\}}$ is in the normalizer of H.

False.

Let \tilde{a} denote the lift of a loop representing a to \tilde{X} , starting at the basepoint \tilde{x}_0 . Then \tilde{a} is illustrated below. By inspection, there is no graph automorphism taking $\tilde{x}_0 = \tilde{a}(0)$ to $\tilde{a}(1)$. (For example, there is a self-loop of the graph incident on $\tilde{a}(1)$ but not $\tilde{a}(0)$.) Therefore a is not in the normalizer.



In fact, there is no graph automorphism taking \tilde{x}_0 to any of the other preimages of the wedge point (the three vertices), and so we see that N(H) = H, and the only elements in N(H) are elements of $F_{\{a,b\}}$ that lift to loops in \tilde{X} based at \tilde{x}_0 .

(c) Again consider the cover \tilde{X} of $S^1 \vee S^1$ shown above. Then the action of a on the preimage of x_0 is transitive.

False.

The preimage of x_0 are the three vertices v_1, v_2, v_3 shown below. By our definition of the action, our element a acts on v_i by mapping it to the endpoint of the lift of a loop representing a^{-1} starting at v_i . We see that a swaps v_2 and v_3 , but fixes v_1 . Hence the action is not transitive.

