Name: \qquad Score (Out of 4 points):

1. (4 points) Let $S^{1} \subseteq \mathbb{R}^{4}$ be the unit circle in $\mathbb{R}^{2} \times\{0\}$. Compute the homology of the quotient \mathbb{R}^{4} / S^{1}.

Solution.

One approach tto this problem is to argue that the space \mathbb{R}^{4} / S^{1} deformation retracts to $D^{2} / \partial D^{2} \cong S^{2}$, and then use our result that homology is homotopy-invariant. In this solution, however, we will calculate the homology directly usign the long exact sequence of a pair. Since S^{1} is a closed smooth submanifold of \mathbb{R}^{4}, the pair $\left(\mathbb{R}^{4}, S^{1}\right)$ is a good pair. Thus

$$
H_{p}\left(\mathbb{R}^{4}, S^{1}\right)=\widetilde{H}_{p}\left(\mathbb{R}^{4} / S^{1}\right)
$$

The long exact sequence of a pair therefore has the form

$$
\cdots \longrightarrow \widetilde{H}_{p}\left(S^{1}\right) \longrightarrow \widetilde{H}_{p}\left(\mathbb{R}^{4}\right) \longrightarrow \widetilde{H}_{p}\left(\mathbb{R}^{4} / S^{1}\right) \longrightarrow \widetilde{H}_{p-1}\left(S^{1}\right) \longrightarrow \cdots
$$

By Homework 9 Problem 3(c), since \mathbb{R}^{4} is contracible, its reduced homology groups $\widetilde{H}_{p}\left(\mathbb{R}^{4}\right)$ vanish for all p.
Moreover, we used the long exact sequence of the pair ($D^{n}, \partial D^{n}$) to prove that

$$
\widetilde{H}_{p}\left(S^{1}\right)=\left\{\begin{array}{ll}
\mathbb{Z}, & p=1 \\
0, & p \neq 1
\end{array} .\right.
$$

Thus our long exact sequence has the form for $p>2$,

$$
\begin{aligned}
& \cdots \longrightarrow \widetilde{H}_{p}\left(\mathbb{R}^{4}\right) \longrightarrow \widetilde{H}_{p}\left(\mathbb{R}^{4} / S^{1}\right) \longrightarrow \widetilde{H}_{p-1}\left(S^{1}\right) \longrightarrow \cdots \\
& \cdots \longrightarrow \widetilde{H}_{p}\left(\mathbb{R}^{4} / S^{1}\right) \longrightarrow 0 \longrightarrow
\end{aligned}
$$

and for $p \leq 2$,
$\cdots \longrightarrow \widetilde{H}_{2}\left(\mathbb{R}^{4}\right) \longrightarrow \widetilde{H}_{2}\left(\mathbb{R}^{4} / S^{1}\right) \longrightarrow \widetilde{H}_{1}\left(S^{1}\right) \longrightarrow \widetilde{H}_{1}\left(\mathbb{R}^{4}\right) \longrightarrow \widetilde{H}_{1}\left(\mathbb{R}^{4} / S^{1}\right) \longrightarrow \widetilde{H}_{0}\left(S^{1}\right) \longrightarrow \widetilde{H}_{0}\left(\mathbb{R}^{4}\right) \longrightarrow \widetilde{H}_{0}\left(\mathbb{R}^{4} / S^{1}\right) \longrightarrow 0$
$\cdots \longrightarrow 0 \longrightarrow \widetilde{H}_{2}\left(\mathbb{R}^{4} / S^{1}\right) \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \widetilde{H}_{1}\left(\mathbb{R}^{4} / S^{1}\right) \longrightarrow 0 \longrightarrow \widetilde{H}_{0}\left(\mathbb{R}^{4} / S^{1}\right) \longrightarrow 0$

We conclude

$$
\widetilde{H}_{p}\left(\mathbb{R}^{4} / S^{1}\right)=\left\{\begin{array}{ll}
\mathbb{Z}, & p=2 \\
0, & p \neq 2
\end{array} .\right.
$$

