Name: _

Score (Out of 4 points):

1. (4 points) Let $S^1 \subseteq \mathbb{R}^4$ be the unit circle in $\mathbb{R}^2 \times \{0\}$. Compute the homology of the quotient \mathbb{R}^4/S^1 .

Solution.

One approach the this problem is to argue that the space \mathbb{R}^4/S^1 deformation retracts to $D^2/\partial D^2 \cong S^2$, and then use our result that homology is homotopy-invariant. In this solution, however, we will calculate the homology directly usign the long exact sequence of a pair. Since S^1 is a closed smooth submanifold of \mathbb{R}^4 , the pair (\mathbb{R}^4, S^1) is a good pair. Thus

$$H_p(\mathbb{R}^4, S^1) = \widetilde{H}_p(\mathbb{R}^4/S^1)$$

The long exact sequence of a pair therefore has the form

$$\cdots \longrightarrow \widetilde{H}_p(S^1) \longrightarrow \widetilde{H}_p(\mathbb{R}^4) \longrightarrow \widetilde{H}_p(\mathbb{R}^4/S^1) \longrightarrow \widetilde{H}_{p-1}(S^1) \longrightarrow \cdots$$

By Homework 9 Problem 3(c), since \mathbb{R}^4 is contracible, its reduced homology groups $\widetilde{H}_p(\mathbb{R}^4)$ vanish for all p.

Moreover, we used the long exact sequence of the pair $(D^n, \partial D^n)$ to prove that

$$\widetilde{H}_p(S^1) = \begin{cases} \mathbb{Z}, & p=1\\ 0, & p \neq 1 \end{cases}.$$

Thus our long exact sequence has the form for p > 2,

$$\cdots \longrightarrow \widetilde{H}_{p}(\mathbb{R}^{4}) \longrightarrow \widetilde{H}_{p}(\mathbb{R}^{4}/S^{1}) \longrightarrow \widetilde{H}_{p-1}(S^{1}) \longrightarrow \cdots$$
$$\cdots \longrightarrow 0 \longrightarrow \widetilde{H}_{p}(\mathbb{R}^{4}/S^{1}) \longrightarrow 0 \longrightarrow \cdots$$

and for $p \leq 2$,

$$\cdots \longrightarrow \widetilde{H}_{2}(\mathbb{R}^{4}) \longrightarrow \widetilde{H}_{2}(\mathbb{R}^{4}/S^{1}) \longrightarrow \widetilde{H}_{1}(S^{1}) \longrightarrow \widetilde{H}_{1}(\mathbb{R}^{4}) \longrightarrow \widetilde{H}_{1}(\mathbb{R}^{4}/S^{1}) \longrightarrow \widetilde{H}_{0}(S^{1}) \longrightarrow \widetilde{H}_{0}(\mathbb{R}^{4}) \longrightarrow \widetilde{H}_{0}(\mathbb{R}^{4}/S^{1}) \longrightarrow 0$$

$$\cdots \longrightarrow 0 \longrightarrow \widetilde{H}_{2}(\mathbb{R}^{4}/S^{1}) \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \widetilde{H}_{1}(\mathbb{R}^{4}/S^{1}) \longrightarrow 0 \longrightarrow 0 \longrightarrow \widetilde{H}_{0}(\mathbb{R}^{4}/S^{1}) \longrightarrow 0$$

We conclude

$$\widetilde{H}_p(\mathbb{R}^4/S^1) = \begin{cases} \mathbb{Z}, & p=2\\ 0, & p\neq 2 \end{cases}.$$