Name: \qquad Score (Out of 5 points):

1. (5 points) Let $\left(X, x_{0}\right)$ and ($\left.Y, y_{0}\right)$ be based spaces, and suppose ($\left.X,\left\{x_{0}\right\}\right)$ and ($Y,\left\{y_{0}\right\}$) are good pairs. Use the Mayer-Vietoris sequence to give a new calculation of the homology of the wedge product $X \vee Y$ (defined by identifying x_{0} and y_{0}) in terms of the homology of X and Y. [You may describe the result directly, without using Mayer-Vietoris, in homological degree 0].

Solution.

Since $\left(X,\left\{x_{0}\right\}\right)$ and $\left(Y,\left\{y_{0}\right\}\right)$ are good pairs, we can find a neighbourhood $V_{x_{0}} \subseteq X$ that deformation retracts to x_{0}, and a neighbourhood $V_{y_{0}} \subseteq Y$ that deformation retracts onto y_{0}.
Let A be the image of $X \cup V_{y_{0}}$ in $X \vee Y$, and let B be the image of $V_{x_{0}} \cup Y$ in $X \vee Y$. Then A deformation retracts onto X and B deformation retracts onto Y. Thus $H_{*}(A)=H_{*}(X)$ and $H_{*}(B)=H_{*}(Y)$.
[Students are not expected to check this point explicitly, but we can construct this deformation retraction as follows. Let $F_{t}: V_{y_{0}} \rightarrow V_{y_{0}}$ be the deformation retraction to y_{0}. Then we can extend F_{t} to a deformation retraction $F_{t}^{\prime}:\left(X \cup V_{y_{0}}\right) \rightarrow\left(X \cup V_{y_{0}}\right)$ from $\left(X \cup V_{y_{0}}\right)$ to $\left(X \cup\left\{y_{0}\right\}\right)$ by defining F_{t}^{\prime} to be the identity on X for all t. We can then use the universal property of the quotient topology to verify that F_{t}^{\prime} induces a well-defined deformation retraction on the image A of $\left(X \cup V_{y_{0}}\right)$ in $X \vee Y$.]
The subsets A and B are open in $X \vee Y$ and cover $X \vee Y$, so we may apply the Mayer-Vietoris sequence to the decomposition $X \vee Y=A \cup B$.
The intersection $A \cap B$ is the image of $V_{x_{0}} \cup V_{y_{0}}$ in $X \vee Y$, which deformation retracts onto the wedge point in $X \vee Y$. Thus $\widetilde{H}_{n}(A \cap B)=0$ for all n.
The Mayer-Vietoris sequence has the form

$$
\begin{gathered}
\cdots \longrightarrow H_{n}(A \cap B) \xrightarrow{\Phi} H_{n}(A) \oplus H_{n}(B) \xrightarrow{\Psi} H_{n}(A \cup B) \xrightarrow{\delta} H_{n-1}(A \cap B) \longrightarrow H_{0}(A \cup B) \longrightarrow 0 .
\end{gathered}
$$

In this instance, when $n \geq 2, H_{n}(A \cap B)=H_{n-1}(A \cap B)=0$, so we have an exact sequence

$$
\cdots \longrightarrow 0 \xrightarrow{\Phi} H_{n}(X) \oplus H_{n}(Y) \xrightarrow{\Psi} H_{n}(X \vee Y) \xrightarrow{\delta} 0 \longrightarrow \cdots
$$

and $H_{n}(X \vee Y) \cong H_{n}(X) \oplus H_{n}(Y)$ for $n \geq 2$. The tail of the sequence has the form

$$
\begin{aligned}
& \cdots \xrightarrow{\longrightarrow} \\
& \stackrel{\Phi}{\longrightarrow} H_{1}(X) \oplus H_{1}(Y) \xrightarrow{\Psi} H_{1}(X \vee Y) \\
&(A \cap B) \xrightarrow{\Phi} H_{0}(X) \oplus H_{0}(Y) \xrightarrow{\Psi} H_{0}(X \vee Y) \longrightarrow 0 .
\end{aligned}
$$

The generator 1 of $H_{0}(A \cap B) \cong \mathbb{Z}$ corresponds to the single path component of $A \cap B$. It is mapped by $\Phi: H_{0}(A \cap B) \rightarrow H_{0}(X) \oplus H_{0}(Y)$ to the element ([$\left.\left.x_{0}\right],-\left[y_{0}\right]\right)$ corresponding to the path components of $x_{0} \in X$ and $y_{0} \in Y$, respectively. This map is injective, hence by exactness δ is zero and $H_{1}(X \vee Y) \cong H_{1}(X) \oplus H_{1}(Y)$.
In degree zero, $H_{0}(X \vee Y)$ is free abelian of rank one smaller than $H_{0}(X) \oplus H_{0}(Y) \cong H_{0}(X \sqcup Y)$, since $X \vee Y$ has one fewer path components than $X \sqcup Y$: the path components of x_{0} and y_{0} are merged in the quotient $X \vee Y$.

