Terms and concepts covered: Local degree and its relationship to degree, cellular homology.

Corresponding reading: Hatcher Ch 2.2, "Cellular Homology" (up to Example 2.36), "Mayer–Vietoris Sequences" (up to / including Example 2.46).

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. (a) Show that S^n has a Δ -complex structure defined inductively by gluing together two *n*-simplices Δ_1^n and Δ_2^n by the identity map on their boundaries.
 - (b) Show that (with suitably chosen orientations) the corresponding simplicial homology group H_n(Sⁿ) ≃ Z is generated by the cycle Δⁿ₁ − Δⁿ₂.
 - (c) Compute the map induced on $H_n(S^n)$ by the reflection that fixes the equator S^{n-1} and interchanges the two simplices.
- 2. Suppose that $f: S^n \to S^n$ has no fixed points. Show that

$$f_t(x) = \frac{(1-t)f(x) - tx}{||(1-t)f(x) - tx||}$$

is a homotopy from *f* to the antipodal map $x \mapsto -x$. (Why does this homotopy require no fixed points?)

- 3. (a) Let $f: S^n \to S^n$ be a homeomorphism. Show that $\deg(f)$ must be ± 1 .
 - (b) Suppose that a continuous map $f: S^n \to S^n$ is not surjective, so f factors through a map

$$S^n \to S^n \setminus \{x\} \hookrightarrow S^n.$$

Show that deg(f) = 0.

- (c) Show that, if $f \simeq g$, then $\deg(f) = \deg(g)$.
- (d) If $f, g: S^n \to S^n$, show that $\deg(f \circ g) = \deg(g) \deg(f)$.
- (e) Let $f: S^n \to S^n$ be a homotopy equivalence. Show that $\deg(f)$ must be ± 1 .
- (f) Show that a reflection $S^n \to S^n$ has degree -1.
- (g) Show that the antipodal map $x \mapsto -x$ is the product of (n + 1) reflections. Conclude that it has degree $(-1)^{n+1}$.
- 4. Suppose that a continuous map $f: S^n \to S^n$ is not surjective. Show that f is nullhomotopic.
- 5. (a) Explain why any map $S^n \to S^n$ that factors $S^n \to D^n \to S^n$ must be degree zero.
 - (b) Construct a surjective map $S^n \to S^n$ of degree zero.
- 6. Let $n \ge 1$. Explain why every map $S^n \to S^n$ can be homotoped to have a fixed point.
- 7. Let $x \in S^n$.
 - (a) Describe a generator of $H_n(S^n, S^n \setminus \{x\})$.
 - (b) Show that $H_n(S^n, S^n \setminus \{x\}) \cong H_n(U, U \setminus \{x\})$ for any neighbourhood U of x.
 - (c) Let $f: S^n \to S^n$ be a continuous map. Let y be a point with a finite preimage $f^{-1}(y) = \{x_1, \ldots, x_m\}$. Let U_1, \ldots, U_m be small disjoint open balls around x_1, x_2, \ldots, x_m , respectively, that map to a small open ball V about y. Show that we can compute the local degree

$$f_*: H_n(U_i, U_i \setminus \{x_i\}) \longrightarrow H_n(V, V \setminus \{y\})$$

by computing the degree

 $f_*: H_{n-1}(U_i \setminus \{x_i\}) \longrightarrow H_{n-1}(V \setminus \{y\})$

and give a topological description of the latter map.

Homework #11

- 8. We outlined proofs of the following facts about the homology of a CW complex *X*. Verify the facts directly in the case that the CW complex stuctue on *X* is a Δ -complex structure, by considering the simplicial homology groups.
 - (a) If *X* is finite dimensional, $H_k(X) = 0$ for all $k > \dim(X)$.
 - (b) More generally, for any Δ -complex X, $H_k(X^n) = 0$ for all k > n.
 - (c) The inclusion $X^n \hookrightarrow X$ induces isomorphisms $H_k(X^n) \xrightarrow{\cong} H_k(X)$ for all k < n.
 - (d) The inclusion $X^n \hookrightarrow X$ induces a surjection $H_n(X^n) \twoheadrightarrow H_n(X)$.
- 9. Let *X* be a CW complex. Prove that the path-components of *X* are the path-components of its 1-skeleton *X*¹. Conclude that the map

$$H_0(X^k) \to H_0(X)$$

induced by the inclusion of the *k*-skeleton is an isomorphism for all $k \ge 1$.

10. Let *SX* denote the suspension of a space *X* (Assignment Problem 3 (e)). Convince yourself that there is a homeomorphism $SS^n \cong S^{n+1}$ for all $n \ge 0$.

Assignment questions

(Hand these questions in!)

- 1. (Topology Qual, Sep 2017). Prove that for positive integers n, k, there does not exist a covering $\pi : S^{2n} \to X$ where X is a simplicial complex with $\pi_1(X) \cong \mathbb{Z}/(2k+1)$.
- 2. (a) Consider the map

$$f: \mathbb{C} \longrightarrow \mathbb{C}$$
$$z \longmapsto z^k$$

Compute $f_* : H_2(\mathbb{C}, \mathbb{C} \setminus \{0\}) \to H_2(\mathbb{C}, \mathbb{C} \setminus \{0\}).$

(b) Let $f : \mathbb{C} \to \mathbb{C}$ be a degree-*d* polynomial with complex coefficients. The function *f* then extends to a function

$$f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$$

on the Riemann sphere $\widehat{\mathbb{C}} \cong S^2$, the one-point compactification of \mathbb{C} . Prove that the degree of the map \widehat{f} , as a map $S^2 \to S^2$, is d.

3. (Mayer-Vietoris).

(a) Let *X* be a space, and let $A, B \subseteq X$ be subspaces whose interiors cover *X*. Let $C_n(A + B)$ denote the subgroup of the singular *n*-chain group $C_n(X)$ consisting of chains that are sums of a chain in *A* and a chain in *B*. Show that following is a short exact sequence of chain complexes.

$$0 \longrightarrow C_n(A \cap B) \xrightarrow{\phi} C_n(A) \oplus C_n(B) \xrightarrow{\psi} C_n(A+B) \longrightarrow 0$$
$$x \longmapsto (x, -x)$$
$$(y, z) \longmapsto y + z$$

(b) We will not prove this carefully, but it is possible to show (by subdividing simplices) that the inclusion of chain complexes

$$C_*(A+B) \to C_*(X)$$

induces isomorphisms on homology groups. Use this fact to deduce the following theorem, and describe the maps Φ and Ψ .

Theorem (The Mayer–Vietoris long exact sequence). Let *X* be a space, and let $A, B \subseteq X$ be subspaces whose interiors cover *X*. Then there is a long exact sequence on homology groups

$$\cdots \longrightarrow H_n(A \cap B) \xrightarrow{\Phi} H_n(A) \oplus H_n(B) \xrightarrow{\Psi} H_n(X) \xrightarrow{\delta} H_{n-1}(A \cap B) \longrightarrow \cdots$$
$$\cdots \longrightarrow H_0(X) \longrightarrow 0.$$

(c) Verify the following statement from Hatcher (p150) about the connecting homomorphism δ . You do not need to verify the claim about barycentric subdivision.

"The boundary map $\delta : H_n(X) \to H_{n-1}(A \cap B)$ can easily be made explicit. A class $\alpha \in H_n(X)$ is represented by a cycle z, and by barycentric subdivision or some other method we can choose z to be a sum x + y of chains in A and B, respectively. It need not be true that x and y are cycles individually, but $\partial x = -\partial y$ since $\partial(x + y) = 0$, and the element $\delta \alpha \in H_{n-1}(A \cap B)$ is represented by the cycle $\partial x = -\partial y$, as is clear from the definition of the boundary map in the long exact sequence of homology groups associated to a short exact sequence of chain complexes."

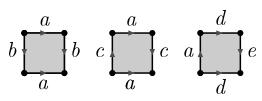
- (d) Use the Mayer–Vietoris sequence fo inductively re-compute the homology of *S*^{*n*}. *Hint:* Take *A* to be a neighbourhood of the top hemisphere, and *B* a neighbourhood of the bottom hemisphere.
- (e) **Definition (Suspension).** For a topological space *X*, the (*unreduced*) suspension *SX* of *X* is the quotient of $X \times I$ obtained by collapsing $X \times \{0\}$ to one point and collapsing $X \times \{1\}$ to another point.

Use the Mayer–Vietoris long exact sequence to prove that $\widetilde{H}_n(SX) \cong \widetilde{H}_{n-1}(X)$. *Hint:* First explain why the images of $X \times [0, 0.6)$ and $X \times (0.4, 1]$ in SX are contractible.

- (f) **(Topology Qual, Jan 2020).** The *unreduced suspension* \tilde{X} of a space X is obtained from $X \times [0, 1]$ by identifying $(x, 0) \sim (y, 0)$ and $(x, 1) \sim (y, 1)$ for all choices of points $x, y \in X$. If S^n is the *n*-sphere, n > 0, compute the homology of the unreduced suspension of $S^n \times \{0, \ldots, k\}$.
- (g) **(Topology Qual, Jan 2022).** Suppose that a certain space *X* decomposes as the union of three open subsets, $X = U_1 \cup U_2 \cup U_3$, satisfying the following properties.
 - The open sets U_1 , U_2 , and U_3 are contractible.
 - The pairwise intersections $U_1 \cap U_2$, $U_1 \cap U_3$, and $U_2 \cap U_3$ are contractible.
 - The triple intersection $U_1 \cap U_2 \cap U_3$ is empty.

Prove that *X* has the same homology as the circle S^1 .

- 4. (a) State the conclusions of our calculations in class of the cellular homology of $\mathbb{C}P^n$ and $\mathbb{R}P^n$.
 - (b) **(Topology Qual, Jan 2021).** Let $\pi : \mathbb{C}^3 \setminus \{0\} \to \mathbb{C}P^2$ be the natural map, sending a point $x \in \mathbb{C}^3 \setminus \{0\}$ to the line $\ell_x \in \mathbb{C}P^2$ connecting x to 0 in \mathbb{C}^3 . Does π admit a section (i.e., a right-inverse)?
 - (c) **(Topology Qual, Jan 2018).** Prove that every CW-structure on $\mathbb{R}P^n$ has at least one cell in each dimension $0, 1, \ldots, n$.
 - (d) **(Topology Qual, Aug 2020).** Let $f : S^4 \to S^4$ be a map with the property that f(x) = f(y) if y is the antipode of x. Show that $H_4(f) = 0$.
- 5. (a) **(Topology Qual, May 2019).** Let *X* be a 2-dimensional CW-complex with one 0-cell, four 1-cells a, b, c, d and four 2-cells, attached along the loops $a^2bc, ab^2d, ac^2d, bcd^2$. Compute the homology of *X*.
 - (b) **(Topology Qual, Jan 2022).** A space *Y* is constructed by gluing together a torus, a Klein bottle, and a cylinder along the edges labelled *a* below, i.e., *Y* is constructed from three squares using the edge identifications shown.



Calculate the homology of Y.