Terms and concepts covered: Covering spaces, lifting properties of covering spaces.

Corresponding reading: Hatcher Ch 1.3

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Suppose that *X* is a connected space. Show that the only subsets of *X* that are both open and closed are *X* and \emptyset .
- 2. (a) Let $p : \tilde{X} \to X$ be a map and suppose an open subset $U \subseteq X$ is evenly covered by p (in the sense of Assignment Problem 1). Show that any open subset $V \subset U$ is also evenly covered by p.
 - (b) Let $p : \tilde{X} \to X$ be a covering space. Deduce that every point of X has a neighbourhood basis of evenly covered open sets.
- 3. Let $p : \tilde{X} \to X$ be a covering map.
 - (a) Let A be a subspace of X. Show that $p|_{p^{-1}(A)} : p^{-1}(A) \to A$ is a covering map.
 - (b) Suppose *B* is a subspace of \tilde{X} . Is $p|_B : B \to p(B)$ necessarily a covering map?
- 4. Let $p: \tilde{X} \to X$ be a covering map. For $x_0 \in X$, show that $p^{-1}(x_0)$ is a discrete set.
- 5. Some but not all sources require a covering map $p: \tilde{X} \to X$ to be surjective. Show that, even if p is not surjective, its image must be a union of connected components of X. *Hint:* Assignment Problem 2.
- 6. Prove that a covering map $p: \tilde{X} \to X$ is an open map, i.e., the image of an open subset is open.
- 7. **Definition (local homeomorphism).** A continuous map $f : X \to Y$ is a *local homeomorphism* if every point $x \in X$ has a neighbourhood U such that $f(U) \subseteq Y$ is open, and the restriction $f|_U : U \to f(U)$ is a homeomorphism.

Definition (locally homeomorphic). A space X is *locally homeomorphic* to a space Y if every point in X has an open neighbourhood homeomorphic to an open subset of Y.

Note that this definition is not symmetric in *X* and *Y*.

- (a) Show that if there exists a local homeomorphism $X \to Y$, then X is locally homeomorphic to Y. The converse is not true, for example, S^2 and \mathbb{R}^2 are locally homeomorphic to each other, but no local homeomorphism exists $S^2 \to \mathbb{R}^2$.
- (b) Verify that a covering map $p: \tilde{X} \to X$ is a local homeomorphism.
- (c) Verify that a local homeomorphism $f : X \to Y$ preserves local properties. For example, *X* will satisfy each of the following properties if and only if f(X) does.
 - (i) local connectedness and local path-connectedness
 - (ii) local compactness
 - (iii) first countability (every point has a countable neighbourhood basis)
 - (iv) being locally Euclidean
- 8. Find an example of a continuous map that is a local homeomorphism but not a covering map.
- 9. Let $p: \tilde{X} \to X$ be a covering map. Show that, if X is Hausdorff, then so is \tilde{X} .
- 10. Consider the covers $p: \tilde{X} \to S^1 \lor S^1$ shown on Hatcher p58 (copied below).
 - (a) For each cover, verify that it is a cover and that $p_*(\pi_1(\tilde{X}))$ is the subgroup shown.

(b) Consider the automorphism group of directed, labelled graphs \tilde{X} . This means the graph automorphisms that preserve the labels *a* and *b* and their orientations. For each cover \tilde{X} , determine whether this automorphism group acts transitively on vertices of \tilde{X} .

- 11. Show that S^n is a cover of $\mathbb{R}P^n$.
- 12. Prove that a 1-sheeted cover is precisely a homeomorphism.
- 13. (a) For each n, construct an n-sheeted cover of S^1 .
 - (b) Show that there is no 3-sheeted cover of RP².
 Hint: Assignment Problem 2. What are the subgroups of π₁(RP²)?
- 14. See Assignment Problem 4 for the definitions of simply-connected, locally simply-connected, and semilocally simply-connected.
 - (a) Show that a simply-connected space is semi-locally simply-connected.
 - (b) Show that a locally simply-connected space is semi-locally simply-connected.
 - (c) Verify that S^1 is locally simply-connected and semi-locally simply-connected but not simply-connected.
 - (d) Verify that the infinite earring is path-connected and locally path-connected but not semi-locally simply-connected.
 - (e) Let *CI* be the cone on the infinite earring (in the sense of Homework #2 Problem 2(f)). Show that *CI* is simply-connected and semi-locally simply-connected, but not locally simply-connected.

- (f) Show that the topological disjoint union $CI \sqcup CI$ is semi-locally simply connected, but not simply connected or locally simply-connected.
- 15. Let $p: S^1 \to S^1$ be the cover $e^{i\theta} \mapsto e^{3i\theta}$ that "wraps" the circle around 3 times. Choose a basepoint x_0 in the base space and a lift $\tilde{x_0}$.
 - (a) Show that the map p_* induced on fundamental groups is the map

 $\mathbb{Z} \longrightarrow \mathbb{Z}$ $1 \longmapsto 3.$

- (b) Explicitly describe for this cover, with pictures, the map Φ from Assignment Problem 2. Verify that the map is well-defined on the cosets of the subgroup $H = 3\mathbb{Z}$ in \mathbb{Z} , and bijective.
- 16. (a) Explain how we can identify the universal cover of S^1 constructed in 4 with our cover $\mathbb{R} \to S^1$.
 - (b) Describe a cover of S^1 associated to each subgroup of \mathbb{Z} .
- 17. (a) Explain how we can identify the universal cover of the torus constructed in 4 with \mathbb{R}^2 .
 - (b) Explain how to construct a cover of the torus from \mathbb{R}^2 for any subgroup of \mathbb{Z}^2 .

Assignment questions

(Hand these questions in!)

1. Let p, q, r be continuous maps with $p = r \circ q$. Assume *X* is locally connected. Show that, if *p* and *r* are covering maps, then so is *q*.

We will use this result later in our proof of the classification of covering spaces of a topological space.

Hint: The following terminology may be convenient.¹ Let $p : X \to X$ be a continuous map of spaces. An open subset $U \subseteq X$ is called *evenly covered* by p if $p^{-1}(U)$ is the disjoint union of open subsets $\Box V_i \subseteq \tilde{X}$ such that, for each i, the restriction $p|_{V_i} : V_i \to U$ is a homeomorphism. We call the parts V_i of the partition $\Box V_i$ of $p^{-1}(U)$ slices. With this terminology, p is a covering map if and only if every point $x \in X$ has a neighbourhood which is evenly covered.

- 2. (a) Recall that a function N on a space X is *locally constant* if each $x \in X$ has a neighbourhood where N is constant. Show that a locally constant function is in fact constant on connected components of X.
 - (b) **Definition (Sheets of a cover).** Let *X* be a connected space. The number of *sheets* of a cover $p : \tilde{X} \to X$ is the cardinality of $p^{-1}(x)$ for a point $x \in X$.

Verify that the cardinality of $p^{-1}(x)$ is locally constant on *X*, and deduce that the number of sheets is well-defined for a cover of a connected space *X*.

¹I do not think it is universally standard but it is used by Munkres.

(c) Let $p: (\tilde{X}, \tilde{x_0}) \to (X, x_0)$ be a cover with X, \tilde{X} path-connected. Consider the function

$$\phi: \pi_1(X, x_0) \longrightarrow p^{-1}(x_0)$$
$$[\gamma] \longmapsto \tilde{\gamma}(1)$$

where $\tilde{\gamma}$ is a lift of a representative γ starting at $\tilde{x_0}$. Show ϕ is well-defined.

(d) Show moreover that ϕ is well-defined on right cosets of $H = p_*(\pi_1(\tilde{X}, \tilde{x_0}))$, and so defines a function

$$\Phi: \pi_1(X, x_0) \mod H \longrightarrow p^{-1}(x_0)$$
$$H[\gamma] \longmapsto \tilde{\gamma}(1)$$

(e) Show that Φ is bijective. This proves the following theorem.

Theorem (Sheets of a cover and π_1 **).** Let $p : (\tilde{X}, \tilde{x_0}) \to (X, x_0)$ be a cover with X, \tilde{X} pathconnected. The number of sheets of p is equal to the index of $p_*(\pi_1(\tilde{X}, \tilde{x_0}))$ in $\pi_1(X, x_0)$.

- (f) The group \mathbb{Z}^2 has index-4 subgroups $(4\mathbb{Z} \times \mathbb{Z})$, $(\mathbb{Z} \times 4\mathbb{Z})$ and $(2\mathbb{Z} \times 2\mathbb{Z})$. Find a 4-sheeted covering map of the torus corresponding to each. No justification necessary.
- 3. (a) Suppose $p : \tilde{X} \to X$ is a covering map and that \tilde{X} is compact. Show that p is finite-sheeted (on each component of X).
 - (b) Let $p: \tilde{X} \to X$ be a surjective covering map that is finite-sheeted (on each component of *X*). Show that *X* is compact if and only if \tilde{X} is.
- 4. (Construction of the universal cover). Throughout this question, when we refer to "path homotopy", or "homotopy classes of paths", we implicitly mean homotopy rel {0,1}. *Hint:* You may read Hatcher p 63-65 while you complete this question.

Definition (simply-connected). A space *X* is called 0-*connected* if it is path-connected. The space is *simply-connected* or 1-*connected* if it is path-connected and $\pi_1(X) = 0$.

Definition (Locally simply-connected). A space *X* is *locally simply-connected* if each point $x \in X$ has a neighbourhood basis of simply-connected open sets *U*.

Definition (Semi-locally simply-connected). A space X is called *semi-locally simply-connected* if every point $x \in X$ has a neighbourhood U such that the inclusion $U \hookrightarrow X$ induces the trivial map $\pi_1(U, x) \to \pi_1(X, x)$.

Observe that in the definition of semi-locally simply-connected, the neighbourhood U does not need to be simply-connected. A loop in U based at x may not contract to the constant map at x by a path homotopy in U, but it does contract to the constant map by a path homotopy in the larger space X. See Warm-Up Problem 14.

Fact: CW complexes are locally contractible, therefore locally simply-connected and semi-locally simply-connected. Hatcher proves this in Proposition A.4 and in this course you may assume it without proof.

The goal of this problem is to construct a simply-connected cover of any path-connected, locally pathconnected, semi-locally simply-connected space. We will later show that such a cover is (in an appropriate sense) unique, and it is called the *universal cover*.

- (a) Suppose that *X* is simply-connected. Show that any two points in *X* are joined by a unique homotopy class of paths.
- (b) Let p : (X, x₀) → (X, x₀) be a covering map. Use the lifting properties to show that there is a bijection between homotopy classes of paths in X starting in x₀ and homotopy classes of paths in X starting at x₀.

(c) **Definition (The universal cover of** X). Let X be a path-connected, locally path-connected, semi-locally simply-connected space with basepoint x_0 . Define

 $\tilde{X} = \{ [\gamma] \mid \gamma \text{ a path in } X \text{ based at } x_0 \}$

where $[\gamma]$ is the homotopy class of the path γ . Define

$$p: \tilde{X} \longrightarrow X$$
$$[\gamma] \longmapsto \gamma(1)$$

Let $\mathcal{U} = \{U \subseteq X \mid U \text{ is path-connected, open, and } \pi_1(U) \to \pi_1(X) \text{ is trivial}\}$. We topologize \tilde{X} be defining a basis of open sets

 $U_{[\gamma]} = \{ [\gamma \cdot \alpha] \mid U \in \mathcal{U}, \ \gamma \text{ a path from } x_0 \text{ to a point in } U, \ \alpha \text{ a path in } U \text{ with } \alpha(0) = \gamma(1) \}.$

Show that the map *p* is well-defined and surjective.

- (d) Show that \mathcal{U} is a basis for the topology on X.
- (e) Show that $U_{[\gamma]} = U_{[\gamma']}$ if $[\gamma'] \in U_{[\gamma]}$. Conclude that the sets $U_{[\gamma]}$ form the basis for a topology on \tilde{X} .
- (f) Show that *p* is continuous. *Hint*: Show that, for $U \in \mathcal{U}$,

$$p^{-1}(U) = \bigcup_{\gamma \text{ a path from } x_0 \text{ to } U} U_{[\gamma]}.$$

- (g) Show that $p|_{U_{[\gamma]}}$ is a homeomorphism to *U*. Deduce that *p* is a covering map.
- (h) Show that \tilde{X} is path-connected. *Hint:* For a point $[\gamma] \in \tilde{X}$, consider the path $t \mapsto [\gamma_t]$, where $[\gamma_t] \in \tilde{X}$ is the homotopy class of the path

$$\gamma_t(s) = \begin{cases} \gamma(s), & 0 \le s \le t \\ \text{constant function at } \gamma(t), & t \le s \le 1. \end{cases}$$

- (i) Let [x₀] denote the class of the constant path in X at x₀. Show that π₁(X̃, [x₀]) = 0. *Hint:* We will prove in class that p_{*} is injective, so it suffices to show that its image is trivial. For a loop γ in X based at x₀, first show that t → [γ_t] is a lift of γ. Deduce that this lift is not a loop unless γ is trivial in π₁(X, x₀).
- (j) Give a brief/informal explanation of how we can identify the universal cover of $S^1 \vee S^1$ with the infinite tree shown in Figure 1.
- (k) (QR Exam, January 2022). For $n \in \mathbb{N}$, let C_n be the metric circle of radius $\frac{1}{n}$ in \mathbb{R}^2 with its north pole at the origin (0,0). Let *C* be the union $\bigcup_n C_n$, topologized as a subspace of Euclidean 2-space. The space *C* has been called the *infinite earring*, the *Hawaiian earring*, and the *shrinking wedge of circles*.

The space C is a standard example of a space that is not *semi-locally simply connected*. Prove that C does not have a universal cover by verifying that it is not semi-locally simply connected, and proving that every space with a universal cover is semi-locally simply connected.

Edit: For the purposes of part (k), take the definition of a universal cover of a path-connected, locally path-connected space X to be a covering space $p : \tilde{X} \to X$ such that \tilde{X} is simply connected. We will soon prove that, if it exists, there is a unique such cover (up to a suitable notion of isomorphism of covers) and so it must agree with the covering space you constructed above in this Assignment Problem.

Figure 1: The universal cover of $S^1 \vee S^1$

5. (The covering space of *X* associated to $H \subseteq \pi_1(X)$). Let *X* be a path-connected, locally path-connected, semi-locally simply-connected space with basepoint x_0 . Let $H \subseteq \pi_1(X, x_0)$ be a subgroup. Define X_H to be the quotient of the universal cover \tilde{X} of *X* (Assignment Problem 4) by the equivalence relation

$$[\gamma] \sim [\gamma']$$
 iff $\gamma(1) = \gamma'(1)$ and $[\gamma \cdot \overline{\gamma'}] \in H$.

Hint: You may read Hatcher Prop 1.36 while you complete this question.

- (a) Verify that \sim is well-defined and is an equivalence relation.
- (b) Show that the covering map $p: \tilde{X} \to X$ factors through a map $p_H: X_H \to X$.
- (c) Verify that p_H is a covering map.
- (d) Show that the image of $(p_H)_*$ is *H*.