Terms and concepts covered: Deck transformations, regular covers.

Corresponding reading: Hatcher Ch 1.3

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let *X* be path-connected, locally path-connected semi-locally simply-connected space. Explain why, if *X* is simply connected, the only covers of *X* are homeomorphisms $X \to X$.
- 2. Let *X*, *Y* be path-connected, locally path-connected spaces. Assume *Y* is semi-locally simply connected. Given a map $f : (X, x_0) \to (Y, y_0)$, which path-connected covers \tilde{Y} of *Y* will *f* lift to?
- 3. We have illustrated a cover \tilde{X} of $S^1 \vee S^1$ as a graph where every edge is directed and labelled by either *a* or *b*. Explain how this convention encodes the data of the covering map, and explain why a deck transformation of \tilde{X} is precisely a graph automorphism that preserves the direction and label of every edge.
- 4. (a) Suppose that *X* has an abelian fundamental group. Explain why every connected cover of *X* is regular.
 - (b) Explain why every connected 2-sheeted cover is regular.
- 5. Let G be a group acting on a set X.
 - (a) Define *orbit*. Prove that the condition " x_1 and x_2 are in the same orbit" defines an equivalence relation on *X*.
 - (b) State and prove the orbit-stabilizer theorem.
- 6. **Definition (Group acting on a space, I).** Let *G* be a group. A group action of *G* on a space *Y* is a group homomorphism $\rho : G \to \text{Homeo}(Y)$, where Homeo(Y) is the group of homeomorphisms $Y \to Y$.

Note: If G were a topological group, we would want to impose extra conditions on our group action to be compatible with the topology. Here we assume that G has no topology, or, equivalently, we may assume that G has the discrete topology.

Verify that the definition of a group action on a space is equivalent to the following.

Definition (Group acting on a space, II). Let *G* be a group. A group action of *G* on a space *Y* is a map

$$\begin{array}{c} \alpha:G\times Y\longrightarrow Y\\ (g,y)\longmapsto g\cdot y\end{array}$$

satisfying three conditions.

(i) For each fixed $g \in G$, the corresponding map is continuous:

$$g: Y \longrightarrow Y$$
$$y \longmapsto g \cdot y$$

- (ii) For each $g, h \in G$ and $y \in Y$, $(gh) \cdot y = g \cdot (h \cdot y)$.
- (iii) For $e \in G$ the identity, $e \cdot y = y$ for all $y \in Y$.
- 7. (a) Let G be a group with a covering space action on a space Y (Assignment Problem 2). Prove that the action is free.
 - (b) Show by example that a free action of a group *G* on a space *Y* need not be a covering action. *Hint:* ℝ acts on ℝ.
- 8. Let $p: Z \to W$ be a continuous surjective map. Show that, if p is an open map, then it is a quotient map.

Assignment questions

(Hand these questions in!)

- 1. (a) Let F_n be the free group on n generators, and F_m the free group on m generators. Show that, if $F_m \cong F_n$, the m = n. Conclude that the number n (called the *rank* of F_n) is an isomorphism invariant. *Hint:* abelianization & structure theorem for finitely generated abelian groups
 - (b) Let *X* be a connected, finite graph with *n* vertices and *e* edges. Show that $\pi_1(X)$ is the free group of rank (e n + 1). You may assume the following result from graph theory.

Proposition (Combinatorics of trees). Let *T* be a finite tree (which is by definition connected). If *T* has *n* vertices, then it has (n - 1) edges.

- (c) Let *X* be a connected *m*-sheeted cover of the wedge $\bigvee_n S^1$ of *n* circles. We proved on Homework 6 that $\pi_1(X)$ is a free group. What is the rank of $\pi_1(X)$?
- (d) Prove the following theorem.

Theorem (Schreier index formula). Let F_n be the free group of rank n. A subgroup of index $m \in \mathbb{N}$ in F_n has rank 1 + m(n-1). An infinite-rank subgroup has infinite index.

This theorem shows that the rank of a finite-index subgroup is a function of its index. Moreover, the larger the index (so "smaller" the subgroup in F_n), the larger its rank!

- (e) Show by example that an infinte-index subgroup of F_n can have finite or infinite rank. *Hint:* See Hatcher's table of covering spaces.
- (f) (QR Exam, Aug 2021). Let F_n denote the free group on n letters $\{a, b, c, \ldots\}$.
 - (i) Prove that F_4 does **not** have a finite-index subgroup isomorphic to F_8 .
 - (ii) Construct a finite-index subgroup H of F_4 isomorphic to F_7 . Determine (explaining your steps) a free generating set for H, and explain whether H is normal.
- 2. (Covering spaces as quotients by covering actions). You may refer to Hatcher p71-73 while you write your solution to this problem.
 - (a) **Definition (Orbit space).** Let *G* be a group acting on a space *Y*. Recall that the *orbit* of a point $y \in Y$ is the subset

$$G \cdot y = \{g \cdot y \mid g \in G\} \subseteq Y$$

The *orbit space* of this action, denoted Y/G, is the quotient space of Y in which every orbit is collapsed to a point.

Let $p : \tilde{X} \to X$ be a surjective normal covering map with deck group $G(\tilde{X})$. Verify that we can identify X with the orbit space $\tilde{X}/G(\tilde{X})$, and $p : \tilde{X} \to X$ with the quotient map. *Hint:* Warm-up problem 8.

(b) **Definition (Covering space action).** Let *G* be a group acting on a space *Y*. Then this action is *covering space action* if it satisfies the following condition. Each $y \in Y$ has a neighbourhood *U* such that all images g(U) for distinct $g \in G$ are disjoint. In other words, $g_1(U) \cap g_2(U) \neq \emptyset$ implies $g_1 = g_2$.

Let $p : \tilde{X} \to X$ be a connected covering space. Verify that the action of the deck group $G(\tilde{X})$ is a covering space action.

- (c) Now suppose that a group *G* is acting on a space *Y* by a covering space action. Prove that the quotient map $p: Y \to Y/G$ is a normal covering space.
- (d) Let *G* is acting on a space *Y* by a covering space action, and suppose *Y* is path-connected. Prove that the Deck group of the cover $p: Y \to Y/G$ is isomorphic to *G*.
- (e) Let *G* is acting on a space *Y* by a covering space action, and suppose *Y* is path-connected and locally path-connected. Let $p: Y \to Y/G$ be the quotient. Prove that

$$\frac{\pi_1(Y/G, G \cdot y_0)}{p_*(\pi_1(Y, y_0))} \cong G.$$

In particular, if *Y* is simply-connected, then $\pi_1(Y/G) \cong G$. *Hint:* This part is a result from class.