
Math 592 Homework #9 Friday 18 March 2022 at 8pm

Terms and concepts covered: singular n-chains, singular homology groups. Induced maps on homology.
Chain homotopy. Reduced homology groups. Good pair, long exact sequence of a pair.

Corresponding reading: Hatcher Ch 2.1, “Singular homology”, “Homotopy invariance”, “Exact sequences
and excision” to end of page 114, Ch 2.A “Homology and fundamental group”.

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. Show that, if a 2-simplex T in a ∆-complex is glued along the word in the edges a1a2a3, then ∂T =
a1 + a2 + a3.

2. (a) Given a chain complex,

. . .
dn+2−−−→ Cn+1(X)

dn+1−−−→ Cn(X)
dn−→ Cn−1(X)

dn−1−−−→ . . .

explain why the homology group Hn(X) depends only on the groups Cn+1(X), Cn(X), Cn−1(X),
and the maps dn+1 and dn.

(b) Let X be a ∆-complex. We proved that a generating set for π1(X) is determined by its 1-skeleton
X1, and that the relations for π1(X) (and hence the isomorphism type) are determined by the 2-
skeleton X2.
Let Hn(X) be the nth simplicial homology group of X . Explain the sense in which generators for
Hn(X) (cycles) are determined by the n-skeleton Xn, and relations for Hn(X) (boundaries) are
determined by the (n+ 1)-skeleton Xn+1.

3. Let X be a space with a choice of ∆-complex structure. Explain the difference between the definitions
of the simplicial n-chains on X , and the singular n-chains on X .

4. Let X be a space. Let Cn(X) denote the singular n-chains on X , and let Hn(X) denote the nth singular
homology group. Suppose that X has path components {Xα}.
(a) Why must the image of each singular n-chain be contained in a single path-component Xα?

(b) Fix n. Deduce that, as a group, Cn(X) decomposes as a direct sum Cn(X) =
⊕
α

Cn(Xα).

(c) Verify that the boundary map ∂n respects this decomposition.

(d) Conclude that there is a decomposition Hn(X) =
⊕
α

Hn(Xα)

5. Let X be a point. Working directly from the definition of singular homology, show that

Hn(X) =

{
Z, n = 0
0, n ≥ 1.

6. (a) LetX be a path-connected space, and letHn(X) denote its nth singular homology group. Working
directly from the definition of singular homology, show that H0(X) ∼= Z.

(b) Let X be a space with path-components {Xα}α. Use part (a) and Warm-up Problem 4 to show that
H0(X) ∼=

⊕
α Z.

7. Let f : X → Y be a continuous map of topological spaces, and let f# denote the map induced by f on
singular n-chains,

f# : Cn(X) −→ Cn(Y )

[σ : ∆n → X] 7−→ [f ◦ σ : ∆n → Y ].
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(a) Verify that f# ◦ ∂ = ∂ ◦ f#.

(b) Conclude that f# is a chain map, so for each n, there is an induced group homomorphism f∗ :
Hn(X)→ Hn(Y ).

8. Fix n. For a continuous map f : X → Y of topological spaces, let f∗ : Hn(X) → Hn(Y ) denote the
induced map on singular homology groups, as in Warm-up Problem 7.

(a) For maps of spaces g : X → Y and f : Y → Z, verify that (f ◦ g)∗ = f∗ ◦ g∗.
(b) Verify that idX : X → X induces the identity map on Hn(X).

(c) Conclude that Hn is a functor from the category of topological spaces and continuous maps, to the
category of abelian groups and group homomorphisms.

9. Let f : X → Y be a continuous map of path-connected spaces. Show that the induced map f∗ :
H0(X)→ H0(Y ) is an isomorphism.

10. Let iA ⊆ X , and let ι be the inclusion map. Show that, if A is a retract of X , then the induced map
ι∗ : Hn(A)→ Hn(X) is injective for all n.

11. We sketched a proof in class of the following result.

Theorem (homotopic maps induce the same map on Hn). If f, g : X → Y are homotopic
maps, then they induce the same map f∗ = g∗ on singular homology groups.

Show that this theorem (and functoriality of Hn) implies the following.

Theorem (Hn is a homotopy invariant). Let f : X → Y be a homotopy equivalence. Then the
induced map on singular homology f∗ : Hn(X) → Hn(Y ) is an isomorphism. In particular,
homotopy equivalent spaces have isomorphic homology groups.

12. Let f : X → Y be a nullhomotopic map. Show that the induced map f∗ : Hn(X) → Hn(Y ) is zero
for all n ≥ 1, and that the induced map f∗ : H̃0(X) → H̃0(Y ) is zero. What is the induced map
f∗ : H0(X)→ H0(Y ) ?

13. (Interpreting exact sequences). Prove that . . .

(a) the sequence

0 −→ A
f−→ B

is exact if and only if f is injective.

(b) the sequence
B

g−→ C −→ 0

is exact if and only if g is surjective.

(c) the sequence

0 −→ A
h−→ B −→ 0

is exact if and only if h is an isomorphism.

(d) the sequence

0 −→ A
f−→ B

g−→ C −→ 0

is exact if and only if f is injective, g is surjective, and C ∼= B/f(A), where f(A) ∼= A.

14. (Calculations with exact sequences of abelian groups). The following sequences are exact.

(a) Compute the group A. Hint: Which maps must be injective, surjective, zero?

. . . −→ Z/2Z −→ Z/5Z −→ A −→ Z/3Z −→ Z −→ . . .
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(b) Compute the group B.

. . . 0 −→ Z⊕ Z/2Z −→ B −→ Z −→ Z −→ Z/5Z −→ 0 −→ . . .

(c) What are the possibilities for the group C?

. . . −→ Z2 −→ Z/2Z −→ C −→ Z −→ Z/3Z −→ . . .

15. (Short Five Lemma).
(a) Consider the following commutative diagram with exact rows.

0 // A
ϕ //

α

��

B
ψ //

β

��

C //

γ

��

0

0 // A′
ϕ′

// B′
ψ′

// C ′ // 0

Prove the remaining step in the Short Five Lemma: If α and γ both surject, then β must also surject.
Conclude that if α and γ are isomorphisms, then β must be an isomorphism.

(b) Explain why the following commutative diagram with exact rows does not contradict the short
five lemma, even though Z/4Z and Z/2Z⊕ Z/2Z are not isomorphic.

0 // Z/2Z
ϕ //

∼=

��

Z/4Z
ψ // Z/2Z //

∼=

��

0

0 // Z/2Z
ϕ′
// Z/2Z⊕ Z/2Z

ψ′
// Z/2Z // 0

16. Compute the singular homology groups and the reduced singular homology groups of the space X
when X is the empty set.

17. Which of the following pairs of spaces A ⊆ X are good pairs?

(a) (M, {p}) for M a manifold and p ∈M .
(b) (Q, A) for A a proper closed subset
(c) (X, {0}) where X = {0, 12 ,

1
4 ,

1
8 , . . .} ⊆ R

(d) (S1, S1 \ {p}) for p ∈ S1.

(e) (X,Xk),X a CW complex with k-skeletonXk

(f) (D2, ∂D2)

(g) (D2, D2 \ ∂D2)

18. Consider the maps m : S1 → T and ` : S1 → T that are the inclusions of the meridian S1 × {1} and
longitudinal circle {1} × S1, respectively. See Assignment Problem 4. Explain how the induced maps
H1(S1) → H1(T ) give a topological interpretation for the homology classes in H1(T ). In general, we
can sometimes understand degree-n homology classes inX in terms of the induced maps from a closed
n-manifold.

19. Let A be a square matrix with entries in a commutative unital ring R. Recall that A is invertible over R if
it has a 2-sided inverse matrix with entries in R.

(a) Suppose that A has entries in Z, so we may view A as a matrix over Z or over Q. Show by ex-
ample that A may be invertible over Q but not over Z. Explain why, if A is invertible over Z, it is
necessarily invertible over Q.

(b) Show that A is invertible over R if and only if its determinant is a unit in R. In particular, a matrix
with entries in Z is invertible over Z if and only if it has determinant ±1.

(c) Explain why a matrix with entries in a field k is invertible over k if and only if it is invertible over
any field extension of k.
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Assignment questions

(Hand these questions in!)

1. Let A be a square matrix with entries in a commutative unital ring R. Recall we say A is invertible over
R if it has a 2-sided inverse matrix with entries in R. See Warm-up Problem 19.

Definition / Theorem (Smith normal form). Let A be an m× n matrix over a principal ideal
domain R. There exists an m × m matrix S and an n × n matrix T such that S and T are
invertible over R, and

SAT =



α1 0 0 · · · 0
0 α2 0 · · · 0

0 0
. . . 0

... αr
...

0
. . .

0 · · · 0


where the diagonal entries αi satisfy αi|αi+1 for all 1 ≤ i ≤ r. The matrixA is called the Smith
normal form of A. The elements αi are unique up to multiplication by a unit in R. They are
called the invariant factors of A.

We are interested in the case R = Z.
Note that, since S, T are invertible, the rank of A is equal to the rank of its Smith normal form.

(a) Let A be a Z-linear map Zn → Zm with invariant factors α1, α2, . . . αr. Prove that the cokernel of
A is isomorphic to Zm−r ⊕

⊕
i Z/αiZ. Conclude that Smith normal form can therefore be used to

put a quotient of a free abelian group Zm into standard form (standard in the sense of the structure
theorem for finitely generated abelian groups), by writing generators for the kernel as the columns
of a matrix.

Remark: In fact, any proof of the structure theorem is likely implicitly a proof of exis-
tence/uniqueness of Smith normal form.

(b) An integer matrix can be put in Smith normal form using the following row and column opera-
tions, which are invertible over Z.

R1. swap rows Ri and row Rj

R2. multiply row Ri by −1

R3. replace row Ri by Ri + nRj for some row
Rj 6= Ri and n ∈ Z

C1. swap columns Ci and row Cj

C2. multiply column Ci by −1

C3. replace columnCi byCi+nCj for some row
Cj 6= Ci and n ∈ Z

To transform A into its Smith normal form, we use the following general steps. You may (if you
wish) read a detailed description in the following handout

https://www3.nd.edu/˜sevens/smithform.pdf

.

• Let d be the gcd of all entries of A. Use row and column operations, and the Euclidean algo-
rithm, to transform the matrix so that some matrix entry equal to d.

Remark: Observe that the row and column operations do not change the gcd.
• Use row and column swaps (R1 and C1) to place d in entry (1, 1).
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• Use row and column operations R3 and C3 to clear the first row and first column, to obtain a
matrix of the form 

d 0 · · · 0
0
...
0

A′

 .
• Repeat the procedure on the matrix A′.

Remark: Each row operation corresponds to multiplying A on the left by an invertible
integer elementary matrix. Each column operation corresponds to multiplying A on the
right by an invertible integer elementary matrix. Thus, by keeping track of the sequence of
row and column operations applied, we can determine the matrices S and T as products
of elementary matrices.

Explain and illustrate the steps to transform the following matrix into its Smith normal form.

A =

[
4 6 6
8 4 12

]
(You do not need to compute S and T ). Verify your answer by going to the website

https://sagecell.sagemath.org/

and entering the lines
A = matrix([[4, 6, 6],[8, 4, 12]])

A.smith_form()

When you hit “Evaluate”, SAGE will give you three matrices: the Smith normal form of A, and the
matrices T and S.

(c) Let A be an m× n integer matrix, and let B be an `×m integer matrix, such that BA = 0.

Zn Zm Z`A

0

B

Prove that B factors through a Z-linear map B : Zm/im(A)→ Z`, and that

ker(B) = ker(B)/im(A).

(d) Prove the following.

Theorem (Smith normal form and homology computations). Let A be an m × n integer
matrix, and let B be an `×m integer matrix, such that BA = 0.

Zn Zm Z`A

0

B

Then

ker(B)/im(A) = Zm−r−s ⊕
r⊕
i=1

Z/αiZ

where r = rank(A), s = rank(B), and α1, . . . , αr are the invariant factors of A.

(e) Use part (d) and SAGE to compute the homology of the following chain complex.

0 −→ Z2


−30 −54
−16 −55

3 9
−2 7


−−−−−−−−−−→ Z4

41 −90 −178 −162
34 −74 −144 −134


−−−−−−−−−−−−−−−−−−−−→ Z2 −→ 0
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2. Definition (Reduced homology). Let X be a space, and let Cn(X) denote its nth singular
homology group. Define the augmented singular chain complex

· · · ∂3−→ C2(X)
∂2−→ C1(X)

∂1−→ C0(X)
ε−→ Z −→ 0

where ε(
∑
i niσi) =

∑
i ni.

The reduced singular homology groups H̃n(X) of X are the homology groups of this chain
complex.

(a) Let C be a free abelian group with Z-basis B, and let ε : C → Z be the homomorphism mapping
every basis element to 1. The kernelK of ε is called the augmentation ideal. Show thatK is generated
by the elements a − b for a, b ∈ B, and show that, given a distinguished element b0 ∈ B, the set
{b− b0 | b ∈ B, b 6= b0} is a Z-basis for K.

(b) Verify that the augmented singular chain complex is, in fact, a chain complex.

(c) Suppose X = ∅. Verify that

Hn(∅) = 0 for all n, and H̃n(∅) =

{
0, n 6= −1
Z, n = −1

(d) Suppose X 6= ∅. Prove that
Hn(X) = H̃n(X), n 6= 0

H0(X) ∼= H̃0(X)⊕ Z

In particular, the singular homology groups and reduced singular homology groups only differ
mildly in degree zero! Nevertheless, the reduced homology have some favourable combinatorial
properties that make them often more convenient to work with. One reason is the following.

(e) Let X be a contractible space. Show that H̃n(X) = 0 for all n.

Remark: The reduced homology groups H̃n define functors from Top to Ab.

3. In this problem, we will begin a proof of the following theorem.

Theorem (H1(X) ∼= π1(X,x0)ab). Let X be path-connected space with basepoint x0. There is
a surjective group homomorphism

h : π1(X,x0) −→ H1(X)

[γ] 7−→ singular 1-chain γ

whose kernel is the commutator subgroup of π1(X,x0). In particular,

H1(X) ∼= π1(X,x0)ab.

You may read Hatcher 2.A and other relevant sections while you write your solutions.

(a) Let α be a based loop in (X,x0). Explain how α is a singular 1-chain, and verify that α is a cycle.

(b) Suppose α is the constant loop at x0. Show that α is a boundary, specifically, the boundary of the
constant singular 2-simplex at x0.

(c) Show that, if α ' β are homotopic rel {0, 1}, then α and β are homologous. Hint: Subdivide I × I .

(d) If α and β are paths with α(1) = β(0), then the 1-chain α · β is homologous to the 1-chain α+ β. In
particular the result applies to based loops α, β.
Hint: Define a singular 2-simplex with boundary α, β, and α · β.

(e) If α is a based path and α its inverse, show that the 1-chain α is homologous to −α.

(f) (h is a homomorphism). Deduce that h is a well-defined homomorphism. It is a special case of the
Hurewicz homomorphism.
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(g) (h is surjective). Let x ∈ H1(X), and let
∑
i niσi be a 1-cycle representing x. By allowing repeats

of summands σi, we can assume each coefficient ni is ±1. Show that x is in the image of h. You
may use these steps:

• Explain why we may assume each ni is 1.
• Explain why we may assume each σi is a loop, by inductively replacing sums σi + σj with the

product of paths σi · σj .
• Explain why we can assume σi is a loop based at x0, possibly by replacing σi by a homotopic

loop of the form ηi · σi · η−1i .
• Find [γ] ∈ π1(X,x0) such that h([γ]) = x.

(h) ([π1, π1] ⊆ ker(h)). Explain why the commutator subgroup of π1(X,x0) must be contained in the
kernel of h.

Next week, we will complete this problem with a proof that ker(h) ⊆ [π1, π1].

4. (a) LetX be a ∆-complex, and let f : Y → X be the inclusion of a ∆-subcomplex. Show that f induces
a well-defined homomorphism on reduced simplicial homology groups, f∗ : H̃∗(Y )→ H̃∗(X).

(b) Compute the maps induced on reduced homology by the following maps of topological spaces.
Hint: For some of these maps, you can solve the problem by viewing their homology groups as
abstract groups and considering the constraints on possible group homomorphisms. In other cases,
use simplicial homology and your solution to part a.

(i) The canonical quotient map q : S2 → RP2.
(ii) The inclusion of the equator f : S1 → S2.

(iii) The map m : S1 → T , where T = S1 × S1, and m is the inclusion of the meridian S1 × {1} .

5. (a) Compute the singular homology groups the space S2/A, where A ⊆ S2 is a finite set of points.

(b) (Topology Qual, Sep 2016). Let Y = (S1 × S1)/(S1 × {1}) (i.e., collapse S1 × {1} to a point) with
the quotient topology. Find the homology of Y .

6. (a) Prove the following proposition.

Proposition (Homology of a wedge sum). Let {Xα} be a collection of topological spaces,
with basepoint xα ∈ Xα such that (Xα, xα) is a good pair for each α. Let

∨
αXα be the

wedge sum forrmed by identifying the basepoints xα, and let iα : Xα →
∨
αXα be the

inclusion map. Then for each n there is an isomorphism on homology

⊕α(iα)∗ :
⊕
α

H̃n(Xα)
∼=−→ H̃n

(∨
α

Xα

)

Hint: Consider the pair (
⊔
αXα,

⊔
α{xα}).

(b) State the homology groups of the following spaces. No justification needed.

(i)
∨
k S

1

(ii) a once-punctured torus
(iii) S1 ∨ S2 ∨ S3 ∨ S∞

(iv) the wedge sum of RP2 and a Mobius band
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