Midterm Exam I
 Math 592
 24 February 2022
 Jenny Wilson

Name: \qquad

Instructions: This exam has 4 questions for a total of 25 points.
The exam is closed-book. No books, notes, cell phones, calculators, or other devices are permitted. Scratch paper is available.

Fully justify your answers unless otherwise instructed. You may quote any results proved in class, on a quiz, or on the homeworks without proof. Please include a complete statement of the result you are quoting.

You have 90 minutes to complete the exam. If you finish early, consider checking your work for accuracy.

Question	Points	Score
1	4	
2	10	
3	2	
4	9	
Total:	25	

Notation

- $I=[0,1]$ (closed unit interval)
- $D^{n}=\left\{x \in \mathbb{R}^{n}| | x \mid \leq 1\right\}$ (closed unit n-disk)
- $S^{n}=\partial D^{n+1}=\left\{x \in \mathbb{R}^{n+1}| | x \mid=1\right\}$ (unit n-sphere)
(we may view S^{1} as the unit circle in \mathbb{C})
- $S^{\infty}=\bigcup_{n \geq 1} S^{n}$ with the weak topology
- Σ_{g} closed genus- g surface
- $\mathbb{R P}^{n}$ real projective n-space
- $\mathbb{C P}^{n}$ complex projective n-space

1. (4 points) Let X be a topological space, and let $I=[0,1]$ be the unit interval with the usual topology. Recall that the cone $C X$ on X is the space obtained by taking the product $X \times I$ and collapsing $X \times\{0\}$ to a point. Prove that the map

$$
\begin{aligned}
& \frac{\text { Top }}{X} \longrightarrow \text { Top } \\
& \\
& \hline
\end{aligned}
$$

defines a functor. Here Top is the category of topological spaces and continuous maps.
2. For each of the following spaces X, give a presentation for the fundamental group.

You do not need to give rigorous proofs, but please show your work in enough detail that I can understand and check your steps.
(a) (2 points) $X=\left(\mathbb{R} P^{2} \times \mathbb{R} P^{3}\right) \vee \mathbb{R} P^{4}$
(b) (2 points) The space X is obtained from a Klein bottle (pictured) by gluing a second 2-disk along $A B A B^{-1}$.

(c) (2 points) Let Y be a CW complex structure on a 10 -disk, and X its 6 -skeleton.
(d) (2 points) Let $S \subseteq \mathbb{R}^{2}$ be a 5 -point subset. Let X be the quotient \mathbb{R}^{2} / S, glueing together the five points.
(e) (2 points) Let X be the "necklace" of five 2-spheres as shown. Each sphere is glued to each neighbour at a point.

3. (2 points) Let $S^{1} \vee S^{1} \vee S^{1}$ be the wedge of circles a, b, c, so we may identify its fundamental group with the free group $F_{\{a, b, c\}}$ on the set $\{a, b, c\}$. Consider the following connected cover of $S^{1} \vee S^{1} \vee S^{1}$. Find free generators for the image of its fundamental group in $F_{\{a, b, c\}}$.

You do not need to give a rigorous proof, but please briefly explain your steps.

4. (9 points) For each of the following statements: if the statement is true, write "True". Otherwise, state a counterexample. No further justification needed.
Note: If the statement is not true, you can receive partial credit for writing "False" without a counterexample.
(a) Let X, Y be spaces, and $A \subseteq X$ a subspace. Suppose $f: X \rightarrow Y$ is a homotopy equivalence. Then $\left.f\right|_{A}: A \rightarrow f(A)$ is a homotopy equivalence.
(b) Let F be a covariant functor from the category of topological spaces and continuous maps, to the category of abelian groups and group homomorphisms. If f is a homeomorphism, then $F(f)$ is an isomorphism of abelian groups.
(c) Let X be a CW complex, and suppose $f: X \rightarrow Y$ is a continuous map whose restriction $\left.f\right|_{X^{1}}$ to the 1-skeleton is nullhomotopic. Then f_{*} induces the trivial map on fundamental group.
(d) If a continuous map of path-connected spaces $f: X \rightarrow Y$ is surjective, then the induced map $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right)$ is surjective.
(e) Suppose a certain space X decomposes as a union of three open contractible subsets $X=A \cup B \cup C$ with $A \cap B \cap C \neq \varnothing$. Then $\pi_{1}(X)=0$.
(f) There does not exist a connected CW complex Y with $\pi_{1}(Y) \cong\langle a, b, c \mid a b c a, b c b c\rangle$.
(g) Recall that $\pi_{1}\left(\Sigma_{2}, x_{0}\right)$ is generated by the four loops a, b, c, d shown. Any map of sets from the set $\{a, b, c, d\}$ to any abelian group A extends uniquely to a group homomorphism $\pi_{1}\left(\Sigma_{2}, x_{0}\right) \rightarrow A$.

(h) Every continuous map from S^{1} to $S^{1} \vee S^{1}$ is nullhomotopic.
(i) Let $n \geq 2$. Every continuous map from S^{n} to $S^{1} \vee S^{1}$ is nullhomotopic.

