Midterm Exam I Math 592 24 February 2022 Jenny Wilson

Name: _

Instructions: This exam has 4 questions for a total of 25 points.

The exam is **closed-book**. No books, notes, cell phones, calculators, or other devices are permitted. Scratch paper is available.

Fully justify your answers unless otherwise instructed. You may quote any results proved in class, on a quiz, or on the homeworks without proof. Please include a complete statement of the result you are quoting.

You have 90 minutes to complete the exam. If you finish early, consider checking your work for accuracy.

Question	Points	Score
1	4	
2	10	
3	2	
4	9	
Total:	25	

Notation

- I = [0, 1] (closed unit interval)
- $D^n = \{x \in \mathbb{R}^n \mid |x| \le 1\}$ (closed unit *n*-disk)
- Sⁿ = ∂Dⁿ⁺¹ = {x ∈ ℝⁿ⁺¹ | |x| = 1} (unit n-sphere) (we may view S¹ as the unit circle in C)
- $S^{\infty} = \bigcup_{n \ge 1} S^n$ with the weak topology
- Σ_g closed genus-g surface
- $\mathbb{R}\mathbf{P}^n$ real projective *n*-space
- $\mathbb{C}\mathbf{P}^n$ complex projective *n*-space

1. (4 points) Let X be a topological space, and let I = [0, 1] be the unit interval with the usual topology. Recall that the cone CX on X is the space obtained by taking the product $X \times I$ and collapsing $X \times \{0\}$ to a point. Prove that the map

$$\frac{\operatorname{Top}}{X} \longrightarrow \frac{\operatorname{Top}}{CX}$$

defines a functor. Here Top is the category of topological spaces and continuous maps.

2. For each of the following spaces X, give a presentation for the fundamental group.

You do not need to give rigorous proofs, but please show your work in enough detail that I can understand and check your steps.

(a) (2 points) $X = (\mathbb{R}P^2 \times \mathbb{R}P^3) \vee \mathbb{R}P^4$

(b) (2 points) The space X is obtained from a Klein bottle (pictured) by gluing a second 2-disk along $ABAB^{-1}$.

(c) (2 points) Let Y be a CW complex structure on a 10-disk, and X its 6-skeleton.

(d) (2 points) Let $S \subseteq \mathbb{R}^2$ be a 5-point subset. Let X be the quotient \mathbb{R}^2/S , glueing together the five points.

(e) (2 points) Let X be the "necklace" of five 2-spheres as shown. Each sphere is glued to each neighbour at a point.

3. (2 points) Let $S^1 \vee S^1 \vee S^1$ be the wedge of circles a, b, c, so we may identify its fundamental group with the free group $F_{\{a,b,c\}}$ on the set $\{a, b, c\}$. Consider the following connected cover of $S^1 \vee S^1 \vee S^1$. Find free generators for the image of its fundamental group in $F_{\{a,b,c\}}$.

You do not need to give a rigorous proof, but please briefly explain your steps.

4. (9 points) For each of the following statements: if the statement is true, write "True". Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not true, you can receive partial credit for writing "False" without a counterexample.

(a) Let X, Y be spaces, and $A \subseteq X$ a subspace. Suppose $f : X \to Y$ is a homotopy equivalence. Then $f|_A : A \to f(A)$ is a homotopy equivalence.

(b) Let F be a covariant functor from the category of topological spaces and continuous maps, to the category of abelian groups and group homomorphisms. If f is a homeomorphism, then F(f) is an isomorphism of abelian groups.

(c) Let X be a CW complex, and suppose $f : X \to Y$ is a continuous map whose restriction $f|_{X^1}$ to the 1-skeleton is nullhomotopic. Then f_* induces the trivial map on fundamental group.

(d) If a continuous map of path-connected spaces $f : X \to Y$ is surjective, then the induced map $f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is surjective.

(e) Suppose a certain space X decomposes as a union of three open **contractible** subsets $X = A \cup B \cup C$ with $A \cap B \cap C \neq \emptyset$. Then $\pi_1(X) = 0$.

(f) There does not exist a connected CW complex Y with $\pi_1(Y) \cong \langle a, b, c \mid abca, bcbc \rangle$.

(g) Recall that $\pi_1(\Sigma_2, x_0)$ is generated by the four loops a, b, c, d shown. Any map of sets from the set $\{a, b, c, d\}$ to any abelian group A extends uniquely to a group homomorphism $\pi_1(\Sigma_2, x_0) \to A$.

(h) Every continuous map from S^1 to $S^1 \vee S^1$ is nullhomotopic.

(i) Let $n \ge 2$. Every continuous map from S^n to $S^1 \lor S^1$ is nullhomotopic.