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Math 592
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Jenny Wilson

Name:

Instructions: This exam has 4 questions for a total of 25 points.

The exam is closed-book. No books, notes, cell phones, calculators, or other devices are
permitted. Scratch paper is available.

Fully justify your answers unless otherwise instructed. You may quote any results proved in
class, on a quiz, or on the homeworks without proof. Please include a complete statement
of the result you are quoting.

You have 90 minutes to complete the exam. If you finish early, consider checking your work
for accuracy.

Question Points Score

1 4

2 10

3 2

4 9

Total: 25

Notation

• I = [0, 1] (closed unit interval)

• Dn = {x ∈ Rn | |x| ≤ 1} (closed unit n-disk)

• Sn = ∂Dn+1 = {x ∈ Rn+1 | |x| = 1}
(unit n-sphere)
(we may view S1 as the unit circle in C)

• S∞ =
⋃

n≥1 S
n with the weak topology

• Σg closed genus-g surface

• RPn real projective n-space

• CPn complex projective n-space
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1. (4 points) Let X be a topological space, and let I = [0, 1] be the unit interval with
the usual topology. Recall that the cone CX on X is the space obtained by taking the
product X × I and collapsing X × {0} to a point. Prove that the map

Top −→ Top

X 7−→ CX

defines a functor. Here Top is the category of topological spaces and continuous maps.

Solution. Call the functor C. First we must define C on morphisms. Let f : X → Y
be a continuous map of spaces. Then we obtain a map

f × idI : X × I −→ Y × I
(x, t) 7−→ (f(x), t).

The map f × idI is continuous on the product topology because it is a product of
continuous maps. Consider the composition of f × idI with the quotient map

X × I f×idI−−−→ Y × I −→ Y × I
Y × {0}

= CY

It restricts to a map X × {0} −→ Y × {0} −→ ∗
Thus the subspace X ×{0} maps to a point in CY . By the uni-
versal property of the quotient topology, the map X × I → CY
factors uniquely through a continuous map from the quotient
(X × I)/(X × {0}) = CX. Let Cf : CX → CY be this map.

X × I Y × I

CX CY

f×idI

Cf

Note that the universal property of the quotient implies Cf is the unique map completing
this commuting square.

We will show the assignment f 7→ Cf defines a covariant functor. We must check two
axioms: the identity axiom, and the composition axiom.

First we observe that, if f = idX : X → X, then we have a
commuting square as shown. Thus C(idX) = idCX as needed.

X × I X × I

CX CX

idX×idI=idX×I

idCX

Now consider continuous maps f : X → Y and g : Y → Z. Then

[(g × idI) ◦ (f × idI)](x, t) = (g × idI)(f(x), t) = (g ◦ f(x), t) = [(g ◦ f)× idI ](x, t)

We obtain the commuting diagram shown.
Since the map Cg ◦ Cf makes the outer rect-
angle commute, we conclude that

C(g ◦ f) = Cg ◦ Cf.

This concludes the proof that C is a functor.

X × I Y × I Z × I

CX CY CZ

f×idI

(g◦f)×idI=(g×idI)◦(f×idI)

g×idI

Cf

Cg◦Cf

Cg

Alternative: We could also observe that the formula for Cf on equivalence classes is
Cf([(x, t)]) = [(f(x), t)], and then check the two axioms hold pointwise for [(x, t)] ∈ CX.
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2. For each of the following spaces X, give a presentation for the fundamental group.

You do not need to give rigorous proofs, but please show your work in enough detail
that I can understand and check your steps.

(a) (2 points) X = (RP2 × RP3) ∨ RP4

Solution.

π1(X) ∼= π1

(
(RP2 × RP3) ∨ RP4

)
∼=
(
π1(RP2)× π1(RP3)

)
∗ π1(RP4)

∼=
(
Z/2Z× Z/2Z

)
∗ Z/2Z

and so
π1(X) = 〈a, b, c | ab = ba, a2 = b2 = c2 = 1〉.

(b) (2 points) The space X is obtained from a Klein bottle (pictured) by gluing a
second 2-disk along ABAB−1.

BB

A

A

Solution. Hatcher Proposition 1.26 (Homework 4) implies that, because the
Klein bottle has a disk glued along the word ABAB−1, this loop is trivial in π1.
Proposition 1.26 further implies that gluing an additional disk along this loop will
not change π1. Hence X has the same fundamental group as the Klein bottlle,

π1(X) ∼= 〈A,B | ABAB−1〉.

(c) (2 points) Let Y be a CW complex structure on a 10-disk, and X its 6-skeleton.

Solution. Let W denote the (common) 2-skeleton of X and Y . You proved
(Homework 4, Problem 2) that the inclusions W ↪→ X and W ↪→ Y induce isomor-
phisms on π1. Thus π1(X) ∼= π1(W ) ∼= π1(Y ). However, Y is contractible, so its
fundamental group is trivial.

π1(X) = 0 ∼= 〈 | 〉.
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(d) (2 points) Let S ⊆ R2 be a 5-point subset. Let X be the quotient R2/S, glueing
together the five points.

Solution. Let X be the quotient of the plane by the 5 points labelled in red. The
plane deformation retracts onto the line segment marked in blue, and (since this ho-
motopy respects the equivalence relation) it descends to a well-defined deformation
retraction on the quotient space X.

Thus, X is homotopy equivalent to a wedge of 4 circles. We conclude

π1(X) ∼= 〈a, b, c, d | 〉.

Alternate Solution. You proved (Homework 2) that the quotient of a CW
complex by a contractible subcomplex is a homotopy equivalence. Consider the
space Y obtained by gluing 4 edges to the plane as shown.

Since these edges form a contractible subcomplex, the quotient map collapsing them
to a point is a homotopy equivalence. Thus, Y is homotopy equivalent to X. On
the other hand, collapsing the plane to a point is a homotopy equivalence from Y
to a wedge of 4 circles.

(e) (2 points) Let X be the “necklace” of five 2-spheres as shown. Each sphere is glued
to each neighbour at a point.

Solution. You proved (Homework 2) that the quotient of a CW complex by a
contractible subcomplex is a homotopy equivalence. We will apply this principle
twice, to show that X is homotopy equivalent to a wedge of a circle and five 2-
spheres.

Thus π1(X) ∼= Z ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∼= Z, and π1(X) has presentation

π1(X) ∼= 〈a | 〉.
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3. (2 points) Let S1 ∨ S1 ∨ S1 be the wedge of circles a, b, c, so we may identify its fun-
damental group with the free group F{a,b,c} on the set {a, b, c}. Consider the following

cover X̃ of S1 ∨ S1 ∨ S1. Find free generators for the image of its fundamental group in
F{a,b,c}.

You do not need to give a rigorous proof, but please briefly explain your steps.

Solution. Our first step is to choose a basepoint x0 of X̃
(marked by a red dot) and find a free generating set of π1(X̃, x0).
To do this, we choose a maximal tree, that is, a contractible
subgraph containing every vertex of X̃. A choice of maximal
tree T is shown in gray.

The quotient X̃/T is wedge of 7 circles, one corresponding to each edge of X̃ not con-
tained in T . Since T is a contractible subcomplex, this quotient is a homotopy equiva-
lence, and we see that π1(X̃, x0) is the free group F7. To find a free generating set, we
lift the 7 cirlces to X̃. This means, for each edge e ∈ X̃ not in T , we must find a loop
that travels from x0 through T to e, traverses e, and then returns through T to x0. We
may make either choice of orientation on the loop.

Seven loops are shown below. By reading off the words given by edge labelling, we find
that the image of π1(X̃, x0) in F{a,b,c} is an isomorphic copy of F7 freely generated by
the words

a3, aca−1, aba−1, b, a2ba−2, a2c−1, a2c.

A different choice of basepoint and maximal tree may result in a different generating set.
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4. (9 points) For each of the following statements: if the statement is true, write “True”.
Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not true, you can receive partial credit for writing “False”
without a counterexample.

(a) Let X, Y be spaces, and A ⊆ X a subspace. Suppose f : X → Y is a homotopy
equivalence. Then f |A : A→ f(A) is a homotopy equivalence.

False. The analogous statement is true for homeomorphisms, but not homotopy
equivalences. Consider, for example, the constant map f : R2 → {∗}. Then f is a
homotopy equivalence, but if we restrict it to some non-contractible subspace of R2

such as the unit circle A = S1, the restriction f |A is not a homotopy equivalence.

(b) Let F be a covariant functor from the category of topological spaces and continu-
ous maps, to the category of abelian groups and group homomorphisms. If f is a
homeomorphism, then F (f) is an isomorphism of abelian groups.

True. Hint: In both categories an isomorphism f : X → Y is precisely a
morphism with an inverse morphism f−1 : Y → X in C satisfying f ◦ f−1 = idY
and f−1 ◦ f = idX . Then by definition of functoriality, all functors must map
isomorphisms to isomorphisms.

(c) Let X be a CW complex, and suppose f : X → Y is a continuous map whose
restriction f |X1 to the 1-skeleton is nullhomotopic. Then f∗ induces the trivial map
on fundamental group.

True. Hint: By assumption the composite X1 ↪→ X → Y induces the zero map
on π1. But you proved that the inclusion X1 ↪→ X induces a surjection on π1.

(d) If a continuous map of path-connected spaces f : X → Y is surjective, then the
induced map f∗ : π1(X, x0)→ π1(Y, f(x0)) is surjective.

False. For example, consider the quotient map of the interval

f : I → I/{0, 1} ∼= S1

gluing its endpoints together to form a circle. This map is surjective, but the in-
duced map on π1 is the inclusion of 0 into Z.

Alternate example: Your favourite multi-sheeted covering space map.
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(e) Suppose a certain space X decomposes as a union of three open contractible sub-
sets X = A ∪B ∪ C with A ∩B ∩ C 6= ∅. Then π1(X) = 0.

False. By van Kampen, this would be true if we knew the pairwise
intersections A∩B, B∩C, and A∩C were path-connected. Without
this assumption, however, the statement may not hold. For example,
consider the decomposition of the circle S1 into the sets A and B
shown, and let C be one component of A ∩B.

(f) There does not exist a connected CW complex Y with π1(Y ) ∼= 〈a, b, c | abca, bcbc〉.

False. We can construct such a CW complex Y using
1 vertex, 3 edges a, b, c, and a 2-disk for each relator, as
shown.

(g) Recall that π1(Σ2, x0) is generated by the four loops a, b, c, d shown. Any map of
sets from the set {a, b, c, d} to any abelian group A extends uniquely to a group
homomorphism π1(Σ2, x0)→ A.

Cell Complexes Chapter 0 5

Cell Complexes

A familiar way of constructing the torus S1×S1 is by identifying opposite sides

of a square. More generally, an orientable surface Mg of genus g can be constructed

from a polygon with 4g sides

by identifying pairs of edges,

as shown in the figure in the

first three cases g = 1,2,3.

The 4g edges of the polygon

become a union of 2g circles

in the surface, all intersect-

ing in a single point. The in-

terior of the polygon can be

thought of as an open disk,

or a 2 cell, attached to the

union of the 2g circles. One

can also regard the union of

the circles as being obtained

from their common point of

intersection, by attaching 2g

open arcs, or 1 cells. Thus

the surface can be built up in stages: Start with a point, attach 1 cells to this point,

then attach a 2 cell.

A natural generalization of this is to construct a space by the following procedure:

(1) Start with a discrete set X0 , whose points are regarded as 0 cells.

(2) Inductively, form the n skeleton Xn from Xn−1 by attaching n cells enα via maps

ϕα :Sn−1→Xn−1 . This means that Xn is the quotient space of the disjoint union

Xn−1
∐
αD

n
α of Xn−1 with a collection of n disks Dnα under the identifications

x ∼ ϕα(x) for x ∈ ∂Dnα . Thus as a set, Xn = Xn−1∐
αe

n
α where each enα is an

open n disk.

(3) One can either stop this inductive process at a finite stage, setting X = Xn for

some n < ∞ , or one can continue indefinitely, setting X =
⋃
n X

n . In the latter

case X is given the weak topology: A set A ⊂ X is open (or closed) iff A∩ Xn is

open (or closed) in Xn for each n .

A space X constructed in this way is called a cell complex or CW complex. The

explanation of the letters ‘CW’ is given in the Appendix, where a number of basic

topological properties of cell complexes are proved. The reader who wonders about

various point-set topological questions lurking in the background of the following

discussion should consult the Appendix for details.

True. Hint: you showed π1(Σ2, x0) is
〈 a, b, c, d | [a, b][c, d] 〉. Since the relator is a
product of commutators, it will be satisfied by
any four elements of any abelian group. Thus
any map {a, b, c, d} → A extends to a group
homomorphism.

(h) Every continuous map from S1 to S1 ∨ S1 is nullhomotopic.

False. For example, consider the inclusion of one of the two circles into the wedge
sum S1 → S1 ∨ S1. The induced map on π1 is nonzero (it is the inclusion of one of
the free factors of π1(S

1 ∨ S1) ∼= Z ∗ Z) and thus cannot be nullhomotopic.

(i) Let n ≥ 2. Every continuous map from Sn to S1 ∨ S1 is nullhomotopic.

True. Hint: Let f : Sn → S1 ∨ S1. Since π1(S
n) = 0, our lifting criterion implies

that f factors through the universal cover X̃ of S1 ∨S1. But we have seen that the
universal cover is a tree, hence contractible.
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