Midterm Exam I
 Math 592
 24 February 2022
 Jenny Wilson

Name: \qquad

Instructions: This exam has 4 questions for a total of 25 points.
The exam is closed-book. No books, notes, cell phones, calculators, or other devices are permitted. Scratch paper is available.

Fully justify your answers unless otherwise instructed. You may quote any results proved in class, on a quiz, or on the homeworks without proof. Please include a complete statement of the result you are quoting.

You have 90 minutes to complete the exam. If you finish early, consider checking your work for accuracy.

Question	Points	Score
1	4	
2	10	
3	2	
4	9	
Total:	25	

Notation

- $I=[0,1]$ (closed unit interval)
- $D^{n}=\left\{x \in \mathbb{R}^{n}| | x \mid \leq 1\right\}$ (closed unit n-disk)
- $S^{n}=\partial D^{n+1}=\left\{x \in \mathbb{R}^{n+1}| | x \mid=1\right\}$ (unit n-sphere)
(we may view S^{1} as the unit circle in \mathbb{C})
- $S^{\infty}=\bigcup_{n \geq 1} S^{n}$ with the weak topology
- Σ_{g} closed genus- g surface
- $\mathbb{R P}^{n}$ real projective n-space
- $\mathbb{C P}^{n}$ complex projective n-space

1. (4 points) Let X be a topological space, and let $I=[0,1]$ be the unit interval with the usual topology. Recall that the cone $C X$ on X is the space obtained by taking the product $X \times I$ and collapsing $X \times\{0\}$ to a point. Prove that the map

$$
\begin{aligned}
\frac{\text { Top }}{X} & \longrightarrow \frac{\text { Top }}{C X}
\end{aligned}
$$

defines a functor. Here Top is the category of topological spaces and continuous maps.

Solution. Call the functor C. First we must define C on morphisms. Let $f: X \rightarrow Y$ be a continuous map of spaces. Then we obtain a map

$$
\begin{aligned}
f \times i d_{I}: X \times I & \longrightarrow Y \times I \\
(x, t) & \longmapsto(f(x), t) .
\end{aligned}
$$

The map $f \times i d_{I}$ is continuous on the product topology because it is a product of continuous maps. Consider the composition of $f \times i d_{I}$ with the quotient map

$$
X \times I \xrightarrow{f \times i d_{I}} Y \times I \longrightarrow \frac{Y \times I}{Y \times\{0\}}=C Y
$$

It restricts to a map $X \times\{0\} \longrightarrow Y \times\{0\} \longrightarrow *$
Thus the subspace $X \times\{0\}$ maps to a point in $C Y$. By the universal property of the quotient topology, the map $X \times I \rightarrow C Y$ factors uniquely through a continuous map from the quotient $(X \times I) /(X \times\{0\})=C X$. Let $C f: C X \rightarrow C Y$ be this map.

Note that the universal property of the quotient implies $C f$ is the unique map completing this commuting square.
We will show the assignment $f \mapsto C f$ defines a covariant functor. We must check two axioms: the identity axiom, and the composition axiom.

First we observe that, if $f=i d_{X}: X \rightarrow X$, then we have a commuting square as shown. Thus $C\left(i d_{X}\right)=i d_{C X}$ as needed.

Now consider continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Then

$$
\left[\left(g \times i d_{I}\right) \circ\left(f \times i d_{I}\right)\right](x, t)=\left(g \times i d_{I}\right)(f(x), t)=(g \circ f(x), t)=\left[(g \circ f) \times i d_{I}\right](x, t)
$$

We obtain the commuting diagram shown. Since the map $C g \circ C f$ makes the outer rectangle commute, we conclude that

$$
C(g \circ f)=C g \circ C f
$$

This concludes the proof that C is a functor.

Alternative: We could also observe that the formula for $C f$ on equivalence classes is $C f([(x, t)])=[(f(x), t)]$, and then check the two axioms hold pointwise for $[(x, t)] \in C X$.
2. For each of the following spaces X, give a presentation for the fundamental group.

You do not need to give rigorous proofs, but please show your work in enough detail that I can understand and check your steps.
(a) (2 points) $X=\left(\mathbb{R P}^{2} \times \mathbb{R} \mathrm{P}^{3}\right) \vee \mathbb{R} \mathrm{P}^{4}$

Solution.

$$
\begin{aligned}
\pi_{1}(X) & \cong \pi_{1}\left(\left(\mathbb{R} \mathrm{P}^{2} \times \mathbb{R} \mathrm{P}^{3}\right) \vee \mathbb{R} \mathrm{P}^{4}\right) \\
& \cong\left(\pi_{1}\left(\mathbb{R} \mathrm{P}^{2}\right) \times \pi_{1}\left(\mathbb{R} \mathrm{P}^{3}\right)\right) * \pi_{1}\left(\mathbb{R} \mathrm{P}^{4}\right) \\
& \cong(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}) * \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

and so

$$
\pi_{1}(X)=\left\langle a, b, c \mid a b=b a, a^{2}=b^{2}=c^{2}=1\right\rangle
$$

(b) (2 points) The space X is obtained from a Klein bottle (pictured) by gluing a second 2-disk along $A B A B^{-1}$.

Solution. Hatcher Proposition 1.26 (Homework 4) implies that, because the Klein bottle has a disk glued along the word $A B A B^{-1}$, this loop is trivial in π_{1}. Proposition 1.26 further implies that gluing an additional disk along this loop will not change π_{1}. Hence X has the same fundamental group as the Klein bottlle,

$$
\pi_{1}(X) \cong\left\langle A, B \mid A B A B^{-1}\right\rangle
$$

(c) (2 points) Let Y be a CW complex structure on a 10 -disk, and X its 6 -skeleton.

Solution. Let W denote the (common) 2-skeleton of X and Y. You proved (Homework 4, Problem 2) that the inclusions $W \hookrightarrow X$ and $W \hookrightarrow Y$ induce isomorphisms on π_{1}. Thus $\pi_{1}(X) \cong \pi_{1}(W) \cong \pi_{1}(Y)$. However, Y is contractible, so its fundamental group is trivial.

$$
\pi_{1}(X)=0 \cong\langle\mid\rangle
$$

(d) (2 points) Let $S \subseteq \mathbb{R}^{2}$ be a 5 -point subset. Let X be the quotient \mathbb{R}^{2} / S, glueing together the five points.

Solution. Let X be the quotient of the plane by the 5 points labelled in red. The plane deformation retracts onto the line segment marked in blue, and (since this homotopy respects the equivalence relation) it descends to a well-defined deformation retraction on the quotient space X.

Thus, X is homotopy equivalent to a wedge of 4 circles. We conclude

$$
\pi_{1}(X) \cong\langle a, b, c, d \mid\rangle
$$

Alternate Solution. You proved (Homework 2) that the quotient of a CW complex by a contractible subcomplex is a homotopy equivalence. Consider the space Y obtained by gluing 4 edges to the plane as shown.

Since these edges form a contractible subcomplex, the quotient map collapsing them to a point is a homotopy equivalence. Thus, Y is homotopy equivalent to X. On the other hand, collapsing the plane to a point is a homotopy equivalence from Y to a wedge of 4 circles.
(e) (2 points) Let X be the "necklace" of five 2-spheres as shown. Each sphere is glued to each neighbour at a point.

Solution. You proved (Homework 2) that the quotient of a CW complex by a contractible subcomplex is a homotopy equivalence. We will apply this principle twice, to show that X is homotopy equivalent to a wedge of a circle and five 2spheres.

Thus $\pi_{1}(X) \cong \mathbb{Z} * 0 * 0 * 0 * 0 * 0 \cong \mathbb{Z}$, and $\pi_{1}(X)$ has presentation

$$
\pi_{1}(X) \cong\langle a \mid\rangle
$$

3. (2 points) Let $S^{1} \vee S^{1} \vee S^{1}$ be the wedge of circles a, b, c, so we may identify its fundamental group with the free group $F_{\{a, b, c\}}$ on the set $\{a, b, c\}$. Consider the following cover \tilde{X} of $S^{1} \vee S^{1} \vee S^{1}$. Find free generators for the image of its fundamental group in $F_{\{a, b, c\}}$.

You do not need to give a rigorous proof, but please briefly explain your steps.

Solution. Our first step is to choose a basepoint x_{0} of \tilde{X} (marked by a red dot) and find a free generating set of $\pi_{1}\left(\tilde{X}, x_{0}\right)$. To do this, we choose a maximal tree, that is, a contractible subgraph containing every vertex of \tilde{X}. A choice of maximal tree T is shown in gray.

The quotient \tilde{X} / T is wedge of 7 circles, one corresponding to each edge of \tilde{X} not contained in T. Since T is a contractible subcomplex, this quotient is a homotopy equivalence, and we see that $\pi_{1}\left(\tilde{X}, x_{0}\right)$ is the free group F_{7}. To find a free generating set, we lift the 7 cirlces to \tilde{X}. This means, for each edge $e \in \tilde{X}$ not in T, we must find a loop that travels from x_{0} through T to e, traverses e, and then returns through T to x_{0}. We may make either choice of orientation on the loop.

Seven loops are shown below. By reading off the words given by edge labelling, we find that the image of $\pi_{1}\left(\tilde{X}, x_{0}\right)$ in $F_{\{a, b, c\}}$ is an isomorphic copy of F_{7} freely generated by the words

$$
a^{3}, a c a^{-1}, a b a^{-1}, b, a^{2} b a^{-2}, a^{2} c^{-1}, a^{2} c
$$

A different choice of basepoint and maximal tree may result in a different generating set.

4. (9 points) For each of the following statements: if the statement is true, write "True". Otherwise, state a counterexample. No further justification needed.
Note: If the statement is not true, you can receive partial credit for writing "False" without a counterexample.
(a) Let X, Y be spaces, and $A \subseteq X$ a subspace. Suppose $f: X \rightarrow Y$ is a homotopy equivalence. Then $\left.f\right|_{A}: A \rightarrow f(A)$ is a homotopy equivalence.

False. The analogous statement is true for homeomorphisms, but not homotopy equivalences. Consider, for example, the constant map $f: \mathbb{R}^{2} \rightarrow\{*\}$. Then f is a homotopy equivalence, but if we restrict it to some non-contractible subspace of \mathbb{R}^{2} such as the unit circle $A=S^{1}$, the restriction $\left.f\right|_{A}$ is not a homotopy equivalence.
(b) Let F be a covariant functor from the category of topological spaces and continuous maps, to the category of abelian groups and group homomorphisms. If f is a homeomorphism, then $F(f)$ is an isomorphism of abelian groups.

True. Hint: In both categories an isomorphism $f: X \rightarrow Y$ is precisely a morphism with an inverse morphism $f^{-1}: Y \rightarrow X$ in \mathscr{C} satisfying $f \circ f^{-1}=i d_{Y}$ and $f^{-1} \circ f=i d_{X}$. Then by definition of functoriality, all functors must map isomorphisms to isomorphisms.
(c) Let X be a CW complex, and suppose $f: X \rightarrow Y$ is a continuous map whose restriction $\left.f\right|_{X^{1}}$ to the 1-skeleton is nullhomotopic. Then f_{*} induces the trivial map on fundamental group.

True. Hint: By assumption the composite $X^{1} \hookrightarrow X \rightarrow Y$ induces the zero map on π_{1}. But you proved that the inclusion $X^{1} \hookrightarrow X$ induces a surjection on π_{1}.
(d) If a continuous map of path-connected spaces $f: X \rightarrow Y$ is surjective, then the induced map $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right)$ is surjective.

False. For example, consider the quotient map of the interval

$$
f: I \rightarrow I /\{0,1\} \cong S^{1}
$$

gluing its endpoints together to form a circle. This map is surjective, but the induced map on π_{1} is the inclusion of 0 into \mathbb{Z}.

Alternate example: Your favourite multi-sheeted covering space map.
(e) Suppose a certain space X decomposes as a union of three open contractible subsets $X=A \cup B \cup C$ with $A \cap B \cap C \neq \varnothing$. Then $\pi_{1}(X)=0$.

False. By van Kampen, this would be true if we knew the pairwise intersections $A \cap B, B \cap C$, and $A \cap C$ were path-connected. Without this assumption, however, the statement may not hold. For example, consider the decomposition of the circle S^{1} into the sets A and B shown, and let C be one component of $A \cap B$.

(f) There does not exist a connected CW complex Y with $\pi_{1}(Y) \cong\langle a, b, c \mid a b c a, b c b c\rangle$.

False. We can construct such a CW complex Y using 1 vertex, 3 edges a, b, c, and a 2 -disk for each relator, as shown.

(g) Recall that $\pi_{1}\left(\Sigma_{2}, x_{0}\right)$ is generated by the four loops a, b, c, d shown. Any map of sets from the set $\{a, b, c, d\}$ to any abelian group A extends uniquely to a group homomorphism $\pi_{1}\left(\Sigma_{2}, x_{0}\right) \rightarrow A$.

True. Hint: you showed $\pi_{1}\left(\Sigma_{2}, x_{0}\right)$ is
 $\langle a, b, c, d \mid[a, b][c, d]\rangle$. Since the relator is a product of commutators, it will be satisfied by any four elements of any abelian group. Thus any map $\{a, b, c, d\} \rightarrow A$ extends to a group homomorphism.
(h) Every continuous map from S^{1} to $S^{1} \vee S^{1}$ is nullhomotopic.

False. For example, consider the inclusion of one of the two circles into the wedge sum $S^{1} \rightarrow S^{1} \vee S^{1}$. The induced map on π_{1} is nonzero (it is the inclusion of one of the free factors of $\left.\pi_{1}\left(S^{1} \vee S^{1}\right) \cong \mathbb{Z} * \mathbb{Z}\right)$ and thus cannot be nullhomotopic.
(i) Let $n \geq 2$. Every continuous map from S^{n} to $S^{1} \vee S^{1}$ is nullhomotopic.

True. Hint: Let $f: S^{n} \rightarrow S^{1} \vee S^{1}$. Since $\pi_{1}\left(S^{n}\right)=0$, our lifting criterion implies that f factors through the universal cover \tilde{X} of $S^{1} \vee S^{1}$. But we have seen that the universal cover is a tree, hence contractible.

