Notation

- I = [0, 1] (closed unit interval)
- $D^n = \{x \in \mathbb{R}^n \mid |x| \le 1\}$ (closed unit *n*-disk)
- $S^n = \partial D^{n+1} = \{x \in \mathbb{R}^{n+1} \mid |x| = 1\}$ (*n*-sphere) (we sometimes view S^1 as the unit circle in \mathbb{C})
- $S^{\infty} = \bigcup_{n \ge 1} S^n$ with the weak topology
- Σ_q closed genus-g surface
- $\mathbb{R}P^n$ real projective *n*-space
- $\mathbb{C}\mathrm{P}^n$ complex projective *n*-space

Practice problems

- 1. Describe all (based) isomorphism classes of regular 3-sheeted covers of $S^1 \vee S^1$.
- 2. The Euler number of a finite graph X is the number of vertices of X minus the number of edges of X.
 - (a) Suppose X is a finite connected graph with Euler number $\chi(X)$. What is the rank of the free group $\pi_1(X)$?
 - (b) If X is a finite graph and $\tilde{X} \to X$ is an n-sheeted cover of X, what is the relationship between the Euler number of X and the Euler number of \tilde{X} ?
- 3. (a) (Centralizer). Let G be a group. Let S be a subgroup of G (or, more generally, a subset). The *centralizer* of S is defined to be

$$C_G(S) = \{g \in G \mid gs = sg \text{ for all } s \in S\}.$$

Prove that $C_G(S)$ is a subgroup of G.

- (b) Explain the difference between the normalizer $N_G(S)$ of S and the centralizer $C_G(S)$ of S.
- (c) Prove that $C_G(S)$ is contained in $N_G(S)$, and that it is a normal subgroup.
- (d) Under what conditions on S will we have containment $S \subseteq C_G(S)$?
- (e) We have another name for the subgroup $C_G(G)$. What is it?
- 4. (a) Consider the transposition (12) in the symmetric group S_4 . What is the normalizer of the subgroup $\langle (12) \rangle$ in S_4 ?
 - (b) What is the normalizer of the subgroup $\langle a \rangle$ in the free group F_2 on a, b?
- 5. **Definition (Abelian cover).** Let X be path-connected, locally path-connected, and semi-locally simply-connected. A cover $p\tilde{X} \to X$ is *abelian* if it is a regular cover with an abelian deck group.
 - (a) Prove that X has an abelian cover U that is universal in the sense that it is a cover of every other abelian cover of X.
 - (b) Verify that the cover $U \to X$ is unique up to isomorphism of covers.
 - (c) What is U when $X = S^1 \vee S^1$?
- 6. (Topology QR Exam, May 2017). Let X be a connected CW-complex whose fundamental group is Σ_3 , the group of all permutations on 3 elements.
 - (a) How many isomorphism classes of objects are there in the category $Cov_0(X)$ of connected covering spaces of X and continuous maps commuting with the covering map?
 - (b) How many isomorphism classes of objects of $Cov_0(X)$ have degree 2?
 - (c) How many isomorphism classes of objects of $Cov_0(X)$ are regular coverings?
- 7. (Topology QR Exam, Jan 2018). Let X be a graph with one vertex and two edges. Does there exist a connected covering $f: Y \to X$ which is regular and a connected covering $g: Z \to Y$ which is regular such that $fg: Z \to X$ is not a regular covering? Prove your answer.

- 8. Let Σ_g be a genus-g surface, and let $n \leq 2g$. Prove or disprove: Σ_g has a regular covering space with deck group \mathbb{Z}^{2g} .
- 9. Let $p:(\tilde{X},\tilde{x_0})\to (X,x_0)$ be a path-connected covering map, and let $H=p_*(\pi_1(\tilde{X},\tilde{x_0}))$. Prove that, if $[\gamma] \in \pi_1(X, x_0)$, then there is a point $\tilde{x_1} \in p^{-1}(x_0)$ with $p_*(\pi_1(\tilde{X}, \tilde{x_1})) = [\gamma]^{-1}H[\gamma]$.
- 10. Find free generating sets for the kernels of the following homomorphisms.

(a)

 $h: F_2 \longrightarrow \mathbb{Z}$ $a \longmapsto 1$ $b \longmapsto 0$

(b)

 $h: F_2 \longrightarrow \mathbb{Z}$ $a \longmapsto 1$ $b \longmapsto 1$

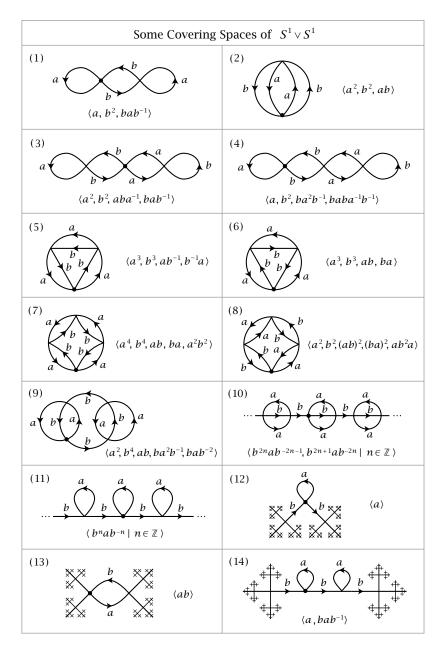
(c)

 $h: F_2 \longrightarrow \mathbb{Z}$ $a\longmapsto 1$ $b \longmapsto 2$

- 11. (Topology QR Exam, May 2020). Describe a set of free generators of the subgroup of the free group on two generators a, b generated by b and all the conjugates of a^2 , b^2 , and $(ab)^3$. Is this a normal subgroup?
- 12. (Topology QR Exam, Jan 2020). Describe a set of free generators of the subgroup of the subgroup of the free group on two generators a, b generated by all conjugates of $aba^{-1}b^{-1}$.
- 13. Build an n-sheeted cover of $S^1 \vee S^1$, with vertices labelled $1, 2, \ldots, n$, such that the action of a on the vertices is given by the permutation (in cycle notation):
 - (a) (123)
 - (b) (12)(3)
 - (c) (1)(2)(3)
 - (d) (12)(34)
- 14. Let $p: \tilde{X} \to X$ be a connected, regular covering map, and let $x_0 \in X$. Let $G(\tilde{X})$ be the deck group. Build a bijection of sets between $G(\tilde{X})$ and the fibre $p^{-1}(x_0)$.
- 15. Suppose that $p: \tilde{X} \to X$ is a path-connected cover. Recall that we defined the cover to be regular if, for any $x \in X$, the group of Deck transformations of the cover acts transitively on the fibre $p^{-1}(x)$. Suppose that there is a single point $x_0 \in X$ such that the group of Deck transformations of the cover acts transitively on the fibre $p^{-1}(x_0)$. Prove that the cover is regular.
- 16. Let (X, x_0) be a based space, and let $p: \tilde{X} \to X$ be a cover.
 - (a) Explain why the subgroup $H = p_*(\pi_1(\tilde{X}, \tilde{x_0}))$ is independent of the choice of basepoint $\tilde{x_0} \in p^{-1}(x_0)$ if and only if H is normal.
 - (b) Let $\gamma \in \pi_1(X, x_0)$. Show by example that the deck transformation of \tilde{X} defined by γ may depend on the choice of basepoint $\tilde{x_0}$, even if H is normal.

(Note that the subgroup H, its normalizer N(H), and the action of an element of N(H) all depend on our choice of basepoint $\tilde{x_0}$).

17. Consider Hatcher's covers \tilde{X} of $S^1 \vee S^1$ in the table below.



Each cover has a distinguished basepoint $\tilde{x_0}$ (marked by a black dot) in the preimage of the single vertex x_0 in $S^1 \vee S^1$. We identify $\pi_1(S^1 \vee S^1, x_0)$ with the free group F_2 on letters a, b. For each cover, answer the following questions.

- (a) How many sheets is the cover?
- (b) What is $H = p_*(\pi_1(\tilde{X}, \tilde{x_0}))$ as a subgroup of $\pi_1(S^1 \vee S^1, x_0) = F_2$? Give a free generating set.
- (c) Is the cover \tilde{X} regular?
- (d) Describe the group of deck transformations of X.

- (e) Number the vertices of \tilde{X} , and compute the permutations on the vertices defined by the actions of a, b, and ab in $\pi_1(S^1 \vee S^1, x_0)$.
- (f) In our proof identifying the deck group of \tilde{X} with N(H)/H, we defined an action of $N(H) \subseteq F_2$ by deck transformations. For each of the covers, for the elements $\gamma = a$ and $\gamma = b$ in F_2 , determine whether γ is in N(H), and, if so, describe the associated deck transformation of \tilde{X} .
- 18. Describe the universal cover of $S^1 \vee S^1$. Choose a cover from Hatcher's table, and explain/illustrate how it can be constructed as a quotient of the universal cover by a suitable choice of covering action.
- 19. Let L(p,q) be the lens space with parameters p,q from Homework 7. Describe all (unbased) isomorphism classes of covering spaces of L(p,q), and the system of all intermediate covering maps.
- 20. Let $p: \tilde{X} \to X$ be a connected cover, and let $x_0 \in X$.
 - (a) Let $\tilde{x_1}, \tilde{x_2} \in p^{-1}(x_0)$. Prove that, if a deck transformation mapping $\tilde{x_1}$ to $\tilde{x_2}$ exists, then it is unique.
 - (b) Suppose a deck transformation τ mapping $\tilde{x_1}$ to $\tilde{x_2}$ exists. Explain how to determine where τ maps an arbitrary point $\tilde{x} \in \tilde{X}$. Hint: Recall our construction from our proof of the existence of lifts.
- 21. Given a group G and a normal subgroup N, show that there exists a normal covering space $\tilde{X} \to X$ with $\pi_1(X) \cong G$, $\pi_1(\tilde{X}) \cong N$, and deck transformation group $G(\tilde{X}) \cong G/N$.
- 22. Let $S^{2k-1} \subseteq \mathbb{C}^k \cong \mathbb{R}^{2k}$ be the unit sphere. Define an action of $\mathbb{Z}/m\mathbb{Z}$ on S^{2k-1} by rotation, generated by the map $v \mapsto e^{2\pi i/m}v$. Compute the fundamental group of its orbit space.
- 23. Let G_1 act on X_1 and G_2 act on X_2 by covering space actions.
 - (a) Define an action of $G_1 \times G_2$ on $X_1 \times X_1$ by

$$(g_1, g_2) \cdot (x_1, x_2) = (g_1 \cdot x_1, g_2 \cdot x_2).$$

Prove this is a covering space action.

- (b) Prove that $(X_1 \times X_2)/(G_1 \times G_2)$ is homeomorphic to $X_1/G_1 \times X_2/G_2$.
- 24. Consider the following actions of a group G on a space X. Determine which actions are covering space actions.
 - (a) $X = S^1$, $G = \mathbb{Z}/2\mathbb{Z}$, and the generator $1 \in \mathbb{Z}/2\mathbb{Z}$ acts by 180° rotation.
 - (b) $X = S^2$, $G = \mathbb{Z}/2\mathbb{Z}$, and the generator $1 \in \mathbb{Z}/2\mathbb{Z}$ acts by 180° rotation around the vertical axis.
 - (c) $X = \mathbb{R}^n$, $G = \mathbb{R}$, and $r \in \mathbb{R}$ acts by

$$r \cdot (x_1, x_2, x_3, \dots, x_n) = (x_1 + r, x_2, x_3, \dots, x_n).$$

(d) $X = \mathbb{R}^n$, $G = \mathbb{Z}$, and $z \in \mathbb{Z}$ acts by

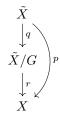
$$z \cdot (x_1, x_2, x_3, \dots, x_n) = (x_1 + z, x_2, x_3, \dots, x_n).$$

(e) $X = Y^n$ for some space $Y, G = S_n$, and $\sigma \in S_n$ acts by

$$\sigma \cdot (y_1, y_2, \dots, y_n) = (y_{\sigma(1)}, y_{\sigma(2)}, \dots, y_{\sigma(n)}).$$

- 25. For each of the following actions: prove that they are covering actions, and identify the quotient (they are spaces we know by name!)
 - (a) The group $\mathbb{Z}/2\mathbb{Z}$ acts on $S^1 \times I$. The generator $1 \in \mathbb{Z}/2\mathbb{Z}$ acts by $(x,t) \mapsto (-x,t)$.
 - (b) The group $\mathbb{Z}/2\mathbb{Z}$ acts on $S^1 \times I$. The generator $1 \in \mathbb{Z}/2\mathbb{Z}$ acts by $(x,t) \mapsto (-x,1-t)$.
- 26. Find a covering space action of $\mathbb{Z}/2\mathbb{Z}$ on the torus so that the quotient is a Klein bottle.

- 27. Let G be a group with a covering space action on a path-connected, locally path-connected space \tilde{X} .
 - (a) What can you say about the relationship between G and $\pi_1(X/G)$? (Note: we did not assume X is simply connected).
 - (b) For a subgroup $H \subseteq G$, show that X/H is a cover of X/G.
 - (c) Show that the cover $X/H \to X/G$ is normal if and only if H is a normal subgroup of G.
 - (d) For subgroups H_1, H_2 of G, show that the covering space X/H_1 and X/H_2 of X/G are isomorphic if and only if H_1 and H_2 are conjugate subgroups of G.
- 28. Let $\tilde{X} \to X$ be a (not necessarily regular) cover, and let G be its group of deck transformations. Let $q: \tilde{X} \to \tilde{X}/G$ be the quotient map to the orbit space X/G. Show that there exists a map r making the following diagram commute.



- 29. Let $\{(C_*^i, d_*^i)\}_{i \in I}$ be a family of chain complexes.
 - (a) How should we define the complex $(\bigoplus_i C_*^i, d_*)$?
 - (b) Prove that (for a suitable solution to part (a)),

$$H_n\left(\bigoplus_i C_*^i\right) = \bigoplus_i H_n(C_*^i).$$

- 30. (a) Let $\{A_n\}_{n\in\mathbb{Z}_{\geq 0}}$ be a family of abelian groups. Construct a chain complex $\{(C_*,d_*)\}$ such that $H_n(C_*)=A_n$.
 - (b) Let $\{A_n\}_{n\in\mathbb{Z}_{\geq 0}}$ be a family of finitely generated abelian groups. Construct a chain complex $\{(C_*,d_*)\}$ such that C_n is free abelian for all n, and $H_n(C_*)=A_n$.
- 31. Consider the abelian groups A and subgroups B given below. Compute the isomorphism type of the quotient A/B (in the sense of the structure theorem for finitely generated abelian groups).
 - (a) $A = \mathbb{Z}^2$, B is the subgroup generated by (2,3).
 - (b) $A = \mathbb{Z}^2$, B is the subgroup generated by (2,4).
 - (c) $A = \mathbb{Z}^2$, B is the subgroup generated by (1,1) and (1,-1).
 - (d) $A = \mathbb{Z}^2$, B is the subgroup generated by (2,1) and (7,4).
 - (e) $A = \mathbb{Z}^2$, B is the subgroup generated by (2,1) and (1,3).
- 32. Put the following matrices into Smith normal form. Choose some matrices of your own and compute their Smith normal forms.

$$\begin{bmatrix} 1 & 3 & -2 \\ 5 & 2 & -1 \\ 6 & -1 & 2 \end{bmatrix} \qquad \begin{bmatrix} 4 & -2 & -2 \\ 3 & -1 & -2 \\ -6 & 6 & 4 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 & 0 \\ -3 & 4 & 1 \\ -2 & 2 & 1 \end{bmatrix}$$

- 33. For a matrix A, what is the relationship between the Smith normal form of A and its transpose A^{T} ?
- 34. Suppose A is a square matrix with entries in \mathbb{Z} .

- (a) Suppose A is invertible over \mathbb{Z} . What are the possibilities for its Smith normal form?
- (b) Suppose A is invertible over \mathbb{Q} (but not necessarily over \mathbb{Z}). What are the possibilities for its Smith normal form?
- 35. Consider the quotient of \mathbb{Z}^3 by the subgroup generated by $\begin{bmatrix} 7 \\ 6 \\ -6 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$.

Compute this group (in the sense of the structure theorem for finitely generated abelian groups). *Hint:* Smith normal form.

36. Compute (without computer assistance) the homology of the following chain complexes.

$$\longrightarrow \mathbb{Z}^2 \xrightarrow{\begin{bmatrix} 4 & -8 \\ -4 & 8 \\ 4 & -8 \end{bmatrix}} \mathbb{Z}^3 \xrightarrow{\begin{bmatrix} -4 & -2 & 2 \\ 2 & 1 & -1 \end{bmatrix}} \mathbb{Z}^2 \longrightarrow$$

$$\longrightarrow \mathbb{Z}^3 \xrightarrow{\begin{bmatrix} 2 & 1 & 2 \\ -2 & -1 & -2 \\ 2 & 1 & 2 \end{bmatrix}} \mathbb{Z}^3 \xrightarrow{\begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & -2 \\ -1 & 1 & 2 \end{bmatrix}} \mathbb{Z}^3 \longrightarrow$$

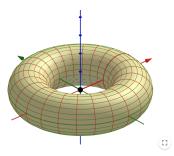
$$\longrightarrow \mathbb{Z}^2 \xrightarrow{\begin{bmatrix} 2 & 2 \\ -1 & -1 \\ -1 & -1 \end{bmatrix}} \mathbb{Z}^3 \xrightarrow{\begin{bmatrix} 1 & 4 & -2 \\ 0 & 3 & -3 \\ 1 & 1 & 1 \end{bmatrix}} \mathbb{Z}^3 \longrightarrow$$

- 37. For each of the following spaces, choose a Δ -complex structure, and compute the simplicial homology.
 - (a) a selection of finite graphs of your choosing
 - (b) a cylinder
 - (c) a Klein bottle
 - (d) the wedge sum of a closed 2-disk and a circle
 - (e) the disjoint union of a cylinder and a circle
- 38. **True or counterexample.** For each of the following statements: if the statement is true, write "True". If not, state a counterexample. No justification necessary.

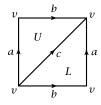
Note: If the statement is false, you can receive partial credit for writing "False" without a counterexample.

- (a) There is no 3-sheeted cover of $\mathbb{R}P^2 \times \mathbb{R}P^2 \times \mathbb{R}P^2$.
- (b) There is no 4-sheeted cover of $\mathbb{R}P^2 \times \mathbb{R}P^2 \times \mathbb{R}P^2$.
- (c) Every cover of a Mobius band is regular.
- (d) Every cover of $S^1 \vee S^1$ is regular.
- (e) Every covering map $p: \tilde{X} \to X$ is the quotient map to the orbit space of the action of the deck group $G(\tilde{X})$ on \tilde{X} .
- (f) Let $\tilde{X} \to X$ be a connected covering space, and let τ be a deck map $\tilde{X} \to \tilde{X}$. If τ fixes a point, then τ is the identity.
- (g) Let X be a path-connected, locally path-connected, semi-locally simply-connected based space. Let H be a subgroup of $\pi_1(X)$, and let Y be a space with $\pi_1(Y) \cong H$. Then there exists a covering map $Y \to X$.

- (h) Let $H_n(X)$ be the *n*th simplicial homology group of a Δ -complex X. Then the rank of $H_n(X)$ is at most the number of n-simplices in X.
- (i) Let X be a 2-dimensional Δ -complex X. Then $H_1(X)$ is free abelian.
- (j) Let X be a 2-dimensional Δ -complex X. Then $H_2(X)$ is free abelian.
- 39. Let T be a smoothly embedded torus in \mathbb{R}^3 , as shown below. Compute the homology of the quotient space \mathbb{R}^3/T .



- 40. Let M be a Mobius band and let S be its boundary circle. Compute the homology of the quotient M/S using the long exact sequence of a pair. Verify your solution by a direct analysis of the homotopy type of the topological space M/S.
- 41. Let T be the torus with the following Δ -complex structure, and consider the subcomplex corresponding to the loop a.



Compute the relative homology groups $H_*(T, a)$...

- (a) ... using the long exact sequence of a pair.
- (b) ... by computing the quotient of simplicial chain complexes $C_*(T)/C_*(a)$ and taking homology.
- 42. Let X be a CW complex, and let X^k denote its k-skeleton.
 - (a) Show that the quotient X^k/X^{k-1} is homotopy equivalent to a wedge of k-dimensional spheres, one for each k-cell of X.
 - (b) What is $H_*(X^k, X^{k-1})$?
 - (c) Verify your answer in the case that X is a Δ -complex, by describing the quotient of the simplicial chain complexes $C_*(X^k)/C_*(X^{k-1})$ and computing its homology.
- 43. Let G be a group acting on a space X. Show that, for each n, there is an induced group action of G on $H_n(X)$.
- 44. (a) Let $A \subseteq X$. Prove or find a counterexample: for each n,

$$H_n(X) \cong H_n(A) \oplus H_n(X, A).$$

(b) Let $A \subseteq X$ and suppose A is a retract of X. Prove or find a counterexample: for each n,

$$H_n(X) \cong H_n(A) \oplus H_n(X, A).$$

- 45. Must the following maps be nullhomotopic? Give a proof or prove a counterexample.
 - (a) $f: S^2 \to S^1 \times S^1$
 - (b) $g: S^1 \times S^1 \to S^2$
- 46. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be an integer matrix.
 - (a) Show that the map $A: \mathbb{R}^2 \to \mathbb{R}^2$ induces a well-defined map on the orbit space $\mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$.
 - (b) Recall that $\mathbb{R}^2/\mathbb{Z}^2$ is the torus T. Compute the map induced by A on $H_1(T)$.