Name: ______ Score (Out of 5 points): 1. (a) (2 points) Prove that a space is contractible if and only if the identity map is nullhomotopic. **Solution.** By definition, a space is contractible iff it is homotopy equivalent to a point *. Suppose Y is contractible. Then the (necessarily constant) map $f:Y\to \{*\}$ has some homotopy inverse $g:\{*\}\to Y$. The map $g\circ f:Y\to Y$ is the constant map at g(*), and is, by definition of homotopy equivalence, homotopic to id_Y . Thus id_Y is nullhomotopic. Now suppose id_Y is homotopic to a constant map $Y \to Y$ at some point $y_0 \in Y$. Then consider the constant map $f: Y \to \{*\}$ and the map $g: \{*\} \to Y$ that maps * to y_0 . Then $f \circ g = id_{\{*\}}$, and $g \circ f$ is the constant map at y_0 , which is homotopic to id_Y by assumption. Thus f and g are homotopy inverses, and Y is contractible. (b) (3 points) Prove that a retract of a contractible space is contractible. **Solution.** Let X be a space and $A \subseteq X$. Suppose A is a retract of X, that is, suppose that there exists a map $r: X \to A$ such that $r|_A = id_A$. Since X is contractible by assumption, by part (a) there must be a homotopy H_t from id_X to the constant map at some point $x_0 \in X$. Concretely, $H_0(x) = x$ for all $x \in X$, and $H_1(x) = x_0$ for all $x \in X$. So consider the homotopy $$F: A \times I \to A$$ $$F_t(a) = r(H_t(a))$$ Then F is continuous because it is the composite of continuous functions. Moreover, $$F_0(a) = r(H_0(a)) = r(a) = a$$ so $F_0 = id_A$, and $$F_1(a) = r(H_1(a)) = r(x_0)$$ so F_1 is the constant map at $r(x_0) \in A$. Thus id_A is nullhomotopic and, by part (a), A is contractible.