Name:

Score (Out of 8 points):

- 1. A terminal object in a category \mathscr{C} (if it exists) is an object T that satisfies the following universal property: for every object X in \mathscr{C} , there exists a unique morphism $f: X \to T$.
 - (a) (3 points) Suppose that a terminal object T exists in a certain category \mathscr{C} . Prove that it is "unique up to unique isomorphism".

Solution. Suppose T and T' are two objects of \mathscr{C} satisfying the universal property. Then there is a unique morphism $f: T \to T'$ (by the universal property for T') and a unique morphism $g: T' \to T$ (by the universal property for T). We will prove that f, g are two-sided inverses, and thus isomorphisms. They are unique isomorphisms in the sense that they are the only morphisms between T and T'.

Note that, by the definition of a category, there must exist an identity morphism $id_T : T \to T$. By the universal property of T, this must be the only morphism $T \to T$. Similarly the identity morphism $id_{T'}: T' \to T'$ is the only morphism $T' \to T'$.

It follows that the maps $g \circ f : T \to T$ and $f \circ g : T' \to T'$ must be equal to id_T and $id_{T'}$, respectively. Thus f and g are isomorphisms. The objectst T and T' are canonically isomorphic, as claimed.

(b) (2 points) Suppose T is a terminal object in a category \mathscr{C} . Prove that, for any object X and morphism $f: T \to X$, the morphism f is monic.

Solution. Recall that a morphism $f : T \to X$ is *monic* if, whenever $f \circ g = f \circ g'$, then g = g'. So suppose that, for some object Y and morphisms $g, g' : Y \to T$, we have $f \circ g = f \circ g'$. But the universal property of T implies that there is a unique morphism $Y \to T$, so necessarily g = g'.

(c) (3 points) What are the terminal objects in the following categories? State a terminal object if one exists, otherwise write "Does not exist". No justification needed.

Let \mathscr{C} be the category ...

 $\underline{\operatorname{Set}}$ of sets and all functions: A singleton set $\{*\}$ Grp of groups and group homomorphisms: The zero group Fld of fields and field homomorphisms: Does not exist Top of topological spaces and continuous maps: A one-point space $\{*\}$ Top_{*} of based topological spaces A one-point based space $(\{*\}, *)$ and based continuous maps: hTop of topological spaces and homotopy classes of continuous maps: A one-point space {*} (or any contractible space)