## Final Exam

Math 490 13 December 2024 Jenny Wilson

| Name: |  |  |  |
|-------|--|--|--|
| таше: |  |  |  |

**Instructions:** This exam has 6 questions for a total of 50 points.

Each student may bring in one double-sided  $(8\frac{1}{2}^{"} \times 11")$  sheet of notes, which they must have either hand-written or typed (in font size at least 12) themselves.

The exam is closed-book. No books, additional notes, cell phones, calculators, or other devices are permitted. Scratch paper is available.

Fully justify your answers unless otherwise instructed. You may cite any (non-optional) results proved on the worksheets, on a quiz, or on the homeworks without proof.

You have 120 minutes to complete the exam. If you finish early, consider checking your work for accuracy.

Jenny is available to answer questions.

| Question | Points | Score |
|----------|--------|-------|
| 1        | 11     |       |
| 2        | 5      |       |
| 3        | 4      |       |
| 4        | 24     |       |
| 5        | 3      |       |
| 6        | 3      |       |
| Total:   | 50     |       |

1. (11 points) For each of the following statements: if the statement is always true, write "True". Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing "False" without a counterexample.

(a) Let (X, d) be a metric space. Then the function  $\tilde{d}(x, y) = \frac{1}{10}d(x, y)$  defines a valid new metric on X.

(b) Let X and Y be homeomorphic metric spaces. If X is bounded, then so is Y.

(c) Let X be a **finite** topological space. If X has the  $T_1$  property, then X must have the discrete topology.

(d) Any infinite subset of  $(\mathbb{R}, \text{ cofinite})$  is dense.

(e) Let A, B be nonempty **connected** subsets of a subspace X of Euclidean space  $\mathbb{R}^n$ . If the distance D(A, B) between A and B is zero, then A and B must be contained in the same connected component of X.

(f) Let X be a topological space, and A a dense subset of X. If A is connected, then so is X.

(g) Let X, Y, Z be topological spaces and consider the product  $Y \times Z$  with the product topology. Then a function  $f: X \to Y \times Z$  is continuous if and only if  $f^{-1}(U \times V)$  is open in X for every open subset  $U \subseteq Y$  and  $V \subseteq Z$ .

(h) Any path-connected metric space X is complete.

- (i) Let X be a topological space, and  $A_1, \ldots, A_n$  a finite collection of subsets of X. If  $A_1, \ldots, A_n$  are compact, then so is their union  $\bigcup_{i=1}^n A_i$ .
- (j) A compact subset C of a topological space must contain all of its accumulation points.

(k) A closed and bounded subset of a complete metric space is compact.

2. (5 points) Consider the following statement.

Let X be a topological space, and  $A \subseteq X$  a subspace.

If X is \_\_\_\_\_\_, then so is A.

Circle all properties that truthfully fill in the blank. No justification needed.

metrizable Hausdorff  $T_1$  connected disconnected

path-connected discrete indiscrete compact non-compact

(By "X is discrete" we mean "X has the discrete topology". Similarly for "indiscrete".)

- 3. (4 points) For each of the following sequences: state the set of all limits, or, if the sequence has no limits, write "Does not converge". No justification necessary.
  - (a) Let  $X = \{a, b, c\}$  have the topology  $\{\emptyset, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$ 
    - (i)  $a, b, a, b, a, b, a, b, \cdots$
    - (ii)  $c, c, c, c, c, c, c, c, c, \cdots$
  - (b) Let  $\mathbb{R}$  have the topology  $\{U \mid 0 \notin U\} \cup \{\mathbb{R}\}.$ 
    - (i)  $1, 2, 3, 4, 5, 6, 7, 8, 9, \cdots$
    - (ii)  $1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \dots$

- 4. (24 points) Consider the following topological spaces X and their subsets S. For each set S, circle all terms that apply to S (and its subspace topology). Then compute the interior  $\operatorname{Int}(S)$ , the closure  $\overline{S}$ , the boundary  $\partial S$ , and the set S' of accumulation points of the set S, viewed as a subset of X. No justification necessary.
  - (a) Let  $X = \{a, b, c, d\}, \mathcal{T} = \{\emptyset, \{a, b\}, \{c\}, \{a, b, c\}, \{d\}, \{a, b, d\}, \{c, d\}, \{a, b, c, d\}\}.$ Let  $S = \{a, c\}.$

compact

connected

 $T_1$ 

 $T_2$  (Hausdorff)

 $\operatorname{Int}(S)$ : \_\_\_\_\_\_\_  $\overline{S}$ : \_\_\_\_\_\_\_  $\partial S$ : \_\_\_\_\_\_\_\_ S': \_\_\_\_\_\_\_\_

Let  $S = \{b\}.$ 

compact

connected

 $T_1$ 

 $T_2$  (Hausdorff)

 $\operatorname{Int}(S)$ : \_\_\_\_\_\_  $\overline{S}$ : \_\_\_\_\_\_  $\partial S$ : \_\_\_\_\_\_ S': \_\_\_\_\_\_

(b) Let  $X = \mathbb{R}$  and  $\mathcal{T} = \{ (a, \infty) \mid a \ge 0 \} \cup \{\emptyset, X\}$ . Note the condition  $a \ge 0$ ! Let  $S = [0, \infty)$ .

compact

connected

 $T_1$ 

 $T_2$  (Hausdorff)

 $\operatorname{Int}(S)$ : \_\_\_\_\_\_\_  $\overline{S}$ : \_\_\_\_\_\_\_  $\partial S$ : \_\_\_\_\_\_\_ S': \_\_\_\_\_\_\_\_

Let  $S = \{-1\}.$ 

compact

connected

 $T_1$ 

 $T_2$  (Hausdorff)

 $\operatorname{Int}(S)$ : \_\_\_\_\_\_\_  $\overline{S}$ : \_\_\_\_\_\_\_  $\partial S$ : \_\_\_\_\_\_\_ S': \_\_\_\_\_\_\_\_

(c) Let  $X = \mathbb{R}$  and  $\{U \mid 0, 1 \notin U\} \cup \{\mathbb{R}\}$ . Let  $S = \{0, 1\}$ .

compact connected

 $T_1$   $T_2$  (Hausdorff)

 $\operatorname{Int}(S)$ : \_\_\_\_\_\_\_  $\overline{S}$ : \_\_\_\_\_\_\_  $\partial S$ : \_\_\_\_\_\_\_ S': \_\_\_\_\_\_\_

Let  $S = \mathbb{R} \setminus \{0\}$ .

compact connected  $T_1$   $T_2$  (Hausdorff)

 $\operatorname{Int}(S)$ : \_\_\_\_\_\_\_  $\overline{S}$ : \_\_\_\_\_\_\_  $\partial S$ : \_\_\_\_\_\_\_\_ S': \_\_\_\_\_\_\_\_

5. (3 points) Let  $f: X \to Y$  be an **injective** function from a metric space X to a space Y with the cofinite topology. Prove that f is continuous.

6. (3 points) Let X be a topological space, and let  $(a_n)_{n\in\mathbb{N}}$  be a sequence of points that converges to a point  $a_{\infty}$  in X. Prove that  $A = \{a_n \mid n \in \mathbb{N}\} \cup \{a_{\infty}\}$  is a compact subset of X.

Page 7 of 7 End of exam.