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Instructions: This exam has 6 questions for a total of 50 points.

Each student may bring in one double-sided (81
2
” × 11”) sheet of notes, which they must

have either hand-written or typed (in font size at least 12) themselves.

The exam is closed-book. No books, additional notes, cell phones, calculators, or other de-
vices are permitted. Scratch paper is available.

Fully justify your answers unless otherwise instructed. You may cite any (non-optional)
results proved on the worksheets, on a quiz, or on the homeworks without proof.

You have 120 minutes to complete the exam. If you finish early, consider checking your work
for accuracy.

Jenny is available to answer questions.
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1 11

2 5

3 4

4 24

5 3

6 3

Total: 50
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1. (11 points) For each of the following statements: if the statement is always true, write
“True”. Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing
“False” without a counterexample.

(a) Let (X, d) be a metric space. Then the function d̃(x, y) = 1
10
d(x, y) defines a valid

new metric on X.

(b) Let X and Y be homeomorphic metric spaces. If X is bounded, then so is Y .

(c) Let X be a finite topological space. If X has the T1 property, then X must have
the discrete topology.

(d) Any infinite subset of (R, cofinite) is dense.

(e) Let A,B be nonempty connected subsets of a subspace X of Euclidean space Rn.
If the distance D(A,B) between A and B is zero, then A and B must be contained
in the same connected component of X.
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(f) Let X be a topological space, and A a dense subset of X. If A is connected, then
so is X.

(g) Let X, Y, Z be topological spaces and consider the product Y ×Z with the product
topology. Then a function f : X → Y × Z is continuous if and only if f−1(U × V )
is open in X for every open subset U ⊆ Y and V ⊆ Z.

(h) Any path-connected metric space X is complete.

(i) Let X be a topological space, and A1, . . . , An a finite collection of subsets of X. If
A1, . . . , An are compact, then so is their union

⋃n
i=1Ai.

(j) A compact subset C of a topological space must contain all of its accumulation
points.

(k) A closed and bounded subset of a complete metric space is compact.
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2. (5 points) Consider the following statement.

Let X be a topological space, and A ⊆ X a subspace.

If X is , then so is A.

Circle all properties that truthfully fill in the blank. No justification needed.

metrizable Hausdorff T1 connected disconnected

path-connected discrete indiscrete compact non-compact

(By “X is discrete” we mean “X has the discrete topology”. Similarly for “indiscrete”.)

3. (4 points) For each of the following sequences: state the set of all limits, or, if the se-
quence has no limits, write “Does not converge”. No justification necessary.

(a) Let X = {a, b, c} have the topology {∅, {c}, {a, c}, {b, c}, {a, b, c}}.

(i) a, b, a, b, a, b, a, b, · · ·

(ii) c, c, c, c, c, c, c, c, c, · · ·

(b) Let R have the topology {U | 0 /∈ U} ∪ {R}.

(i) 1, 2, 3, 4, 5, 6, 7, 8, 9, · · ·

(ii) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, · · ·
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4. (24 points) Consider the following topological spaces X and their subsets S. For each
set S, circle all terms that apply to S (and its subspace topology). Then compute the
interior Int(S), the closure S, the boundary ∂S, and the set S ′ of accumulation points
of the set S, viewed as a subset of X. No justification necessary.

(a) Let X = {a, b, c, d}, T =
{
∅, {a, b}, {c}, {a, b, c}, {d}, {a, b, d}, {c, d}, {a, b, c, d}

}
.

Let S = {a, c}.

compact connected T1 T2 (Hausdorff)

Int(S): S: ∂S: S ′:

Let S = {b}.

compact connected T1 T2 (Hausdorff)

Int(S): S: ∂S: S ′:

(b) Let X = R and T =
{
(a,∞)

∣∣ a ≥ 0
}
∪ {∅, X}. Note the condition a ≥ 0!

Let S = [0,∞).

compact connected T1 T2 (Hausdorff)

Int(S): S: ∂S: S ′:

Let S = {−1}.

compact connected T1 T2 (Hausdorff)

Int(S): S: ∂S: S ′:
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(c) Let X = R and {U | 0, 1 /∈ U} ∪ {R}. Let S = {0, 1}.

compact connected T1 T2 (Hausdorff)

Int(S): S: ∂S: S ′:

Let S = R \ {0}.

compact connected T1 T2 (Hausdorff)

Int(S): S: ∂S: S ′:
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5. (3 points) Let f : X → Y be an injective function from a metric space X to a space
Y with the cofinite topology. Prove that f is continuous.
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6. (3 points) LetX be a topological space, and let (an)n∈N be a sequence of points that con-
verges to a point a∞ in X. Prove that A = {an | n ∈ N}∪{a∞} is a compact subset of X.
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