1 Posets and their Hasse diagrams

Definition I. A *partially ordered set* (often abbreviated to *poset*) $\mathcal{P} = (P, \leq)$ is a set *P* (called the *ground set*) with a *partial order* \leq . A partial order \leq is a *relation* on *P* (that is, a subset of $P \times P$) that is

- reflexive: $a \leq a$ for all $a \in P$.
- *antisymmetric*: if $a \le b$ and $b \le a$, then a = b.
- *transitive*: if $a \leq b$ and $b \leq c$ then $a \leq c$.

If $a \le b$ then we say *a* is *less than b* or *a precedes b*. If $a \le b$ or $b \le a$, we say *a* and *b* are *comparable*. Otherwise, they are *incomparable*. A poset is *totally ordered* if every pair of elements are comparable.

We write a < b if $a \leq b$ and $a \neq b$.

We say that *b* covers *a* if a < b and there does not exist any third element *x* such that a < x < b.

A *subposet* of a poset (P, \leq) is a subset of *P* with the restriction of the partial order \leq .

A *chain* in a poset (P, \leq) is a totally ordered subposet $a_0 < a_1 < \cdots < a_p$. The *height* of an element a in a poset is the maximum number p (possibly infinity) such that there exists a chain $a_0 < a_1 < \cdots < a_p = a$ of length (p+1).

Given a poset (P, \leq) and a, b in P, the *interval* [a, b] (also denoted $P_{[a,b]}$) is the subposet

$$P_{[a,b]} = \{ x \in P \mid a \le x \le b \}.$$

We also define the following notation for the subposets

$$P_{\leq a} = \{ x \in P \mid x < a \} \qquad P_{\leq a} = \{ x \in P \mid x \leq a \} \qquad P_{\geq a} = \{ x \in P \mid x \geq a \} \qquad P_{>a} = \{ x \in P \mid x > a \}.$$

Definition II. A *Hasse diagram* is a directed graph that encodes a finite poset (P, \leq) . It consists of a vertex for each element of P, with a directed edge (usually oriented upwards) from $a \in P$ to $b \in P$ whenever b covers a.

It is convenient to write elements of *P* of height *h* on row (h + 1) from the bottom of the Hasse diagram.

Example III. The following figures show the Hasse diagram of the poset of subsets of a set $\{a, b, c\}$, ordered by inclusion, and the Hasse diagram of the poset of partitions of the set $\{a, b, c, d\}$, ordered by refinement, and the Hasse diagram of the poset of divisors of 60, ordered by divisibility.

Exercise 1. Consider the set $[3] = \{1, 2, 3\}$ with the usual ordering 1 < 2 < 3. Draw the Hasse diagrams for the following partial orders on the Cartesian product $[3] \times [3]$.

(a) Lexicographical order: $(a, b) \leq (c, d)$ if $a \leq c$, or if a = c and $b \leq d$.

(b) Product order: $(a, b) \leq (c, d)$ if $a \leq c$ and $b \leq d$.

(c) Reflexive closure of strict direct product order: $(a \le b) \le (c, d)$ if (a, b) = (c, d), or if a < c and b < d.

1.1 Least elements, minima, and lower bounds

Definition IV. An element *a* in a poset (P, \leq) is called *minimal* if there is no element *x* with $x \leq a$. It is called a *least* element if $a \leq b$ for all $b \in P$. *Maximal* elements and *greatest* elements are defined analogously.

A least element, if it exists, is unique. However, posets with no least element may have multiple (incomparable) minimal elements.

Definition V. Let *A* be a subset of a poset (P, \leq) . A *lower bound* of *A* is an element $\ell \in P$ such that $\ell \leq a$ for all $a \in A$. The element ℓ may or may not be contained in *A*. A greatest element of the subposet of lower bounds of *A* is called the *greatest lower bound* of *A*. Upper bounds and *least upper bounds* are defined similarly.

Definition VI. A poset (P, \leq) is called a *lattice* if every pair of elements $\{a, b\} \subseteq P$ has a greatest lower bound (denoted $a \land b$) and a least upper bound (denoted $a \lor b$).

1.2 Maps of posets

Definition VII. Given posets (P, \leq) and (Q, \leq) , a function $f : P \to Q$ is called *order-preserving* or *monotone* if $f(a) \leq f(b)$ whenever $a \leq b$. It is called *strictly* order-preserving or *strictly* monotone if f(a) < f(b) whenever a < b.

2 The order complex of a poset

Definition VIII. Let $\mathcal{P} = (P, \leq)$ be a poset. The *order complex* $\Delta(\mathcal{P})$ of \mathcal{P} is the abstract simplicial complex whose vertex set is P, and whose simplices are precisely the nonempty finite chains in \mathcal{P} .

Example IX. Consider the poset of nonempty subsets of $\{1, 2, 3\}$ ordered by inlcusion. The Hasse diagram and its order complex are illustrated. The geometric realization of the order complex is the barycentric subdivision of a 2-simplex.

Exercise 2. Verify that a monotone map of posets induces a simplicial map on their order complexes.

Definition X. A *flag complex* is an (abstract) simplicial complex X with the following property. Let S be a nonempty subset of vertices of X. If every pair of vertices of S span an edge, then S is a simplex of X.

Exercise 3. Prove that the order complex of a poset is a flag complex.