## 1 Joins

**Definition I.** Let *X* and *Y* be topological spaces. The *join* of *X* and *Y*, denoted  $X \star Y$ , is the quotient space of the disjoint union  $X \sqcup (X \times Y \times I) \sqcup Y$  obtained by glueing  $(X \times Y \times I)$  to *X* along  $X \times Y \times \{0\}$  via the projection map  $p_X$ , and glueing  $(X \times Y \times I)$  to *Y* along  $X \times Y \times \{1\}$  via the projection map  $p_y$ ,

$$p_X : X \times Y \times \{0\} \longrightarrow X \qquad p_Y : X \times Y \times \{1\} \longrightarrow Y (x, y, 0) \longmapsto x \qquad (x, y, 1) \longmapsto y$$

By convention, the join  $X \star \emptyset$  of a space X with the empty set is X.

We can think of the join of *X* and *Y* as a space constructed from the disjoint union of *X* and *Y* by attaching a line segment from every point in *X* to every point in *Y*. Specifically,  $x \in X$  and  $y \in Y$  are joined by the line  $\{(x, y, t) \mid 0 \le t \le 1\}$ . For subspaces of  $\mathbb{R}^n$ , we can make this construction precise with the following definition.

**Proposition II.** Let X and Y be disjoint subsets of some Euclidean space  $\mathbb{R}^n$ . Then

$$X \star Y \cong \{t \cdot x + (1 - t) \cdot y \mid x \in X, \ y \in Y, t \in [0, 1]\}.$$

**Example III.** The join of  $S^0$  and  $S^1$  is homeomorphic to  $S^2$ .

**Proposition IV.** The join operation satisfies the following properties.

- Commutativity: there is a natural isomorphism  $X \star Y \cong Y \star X$  for all topological spaces X, Y.
- Associativity: there is a natural isomorphism  $X \star (Y \star Z) \cong (X \star Y) \star Z$  for all topological spaces X, Y, Z.

**Proposition V.** Let X be a topological space. Let  $S^n$  denote the n-sphere, and  $\Delta^n$  denote an n-simplex.

- (a) The join  $X \star \Delta^0$  of X and a point is homeomorphic to the cone CX on X.
- (b) The join of X with the 0-sphere  $S^0$  is homeomorphic to the (unreduced) suspension SX of X.
- (c)  $S^n \star S^m \cong S^{n+m+1}$ .
- (d) The (n + 1)-fold join of a 0-sphere  $(S^0)^{\star (n+1)} = S^0 \star S^0 \star \cdots \star S^0$  is homeomorphic to  $S^n$ .
- (e)  $\Delta^n \star \Delta^m \cong \Delta^{m+n+1}$ .
- (f) The (n + 1)-fold join of a point  $(\Delta^0)^{\star(n+1)} = \Delta^0 \star \Delta^0 \star \cdots \star \Delta^0$  is homeomorphic to  $\Delta^n$ .

**Exercise 1. (Bonus)** Explain the sense in which the join contains canonical homeomorphic copies of *X* and *Y*. *Hint:* Worksheet #1, Exercise 3 part (b).

Exercise 2. (Bonus) Prove Proposition IV.

**Exercise 3.** (Bonus) Verify that the join of CW complexes X and Y has a CW complex structure, and contains X and Y as subcomplexes. Assuming X and Y are CW complexes with the property that the product and weak topology on  $X \times Y$  agree, verify that the weak topology agrees with the defining quotient topology on the join.

Exercise 4. (Bonus) Prove Proposition II.

**Exercise 5. (Bonus)** Prove Proposition V.



## **1.1** Homotopy type of a join

**Proposition VI.** Suppose that there are homotopy equivalences  $X \simeq X'$  and  $Y \simeq Y'$ . Then there is a homotopy equivalence  $(X \star Y) \simeq (X' \star Y')$ .

**Corollary VII.** *The join of any space X with a contractible space is contractible.* 

**Exercise 6.** (Bonus) Prove Proposition VI. *Hint:* Worksheet #1, Exercise 2.

## **1.2** The homology and homotopy groups of a join

**Proposition VIII.** Let X and Y be topological spaces. Then

$$\widetilde{H}_{k+1}(X \star Y) \cong \bigoplus_{i+j=k} \widetilde{H}_i(X) \otimes \widetilde{H}_i(Y) \oplus \bigoplus_{i+j=k-1} \operatorname{Tor}(\widetilde{H}_i(X), \widetilde{H}_j(Y)).$$

**Proposition IX.** For i = 1, ..., k let  $X_i$  be an  $n_i$ -connected topological space. Then the join  $X_1 * X_2 * \cdots * X_p$  is  $((\sum_{i=1}^{p} (n_i + 2)) - 2)$ -connected.

Exercise 7. (Bonus) In this exercise we will prove Proposition VIII, using the Künneth formula.

**Theorem X** (The Künneth formua). *Given a PID R and topological spaces X and Y the homology of their product is determined by the following (noncanonically) split short exact sequence of R-modules.* 

$$0 \longrightarrow \bigoplus_{i+j=k} H_i(X;R) \otimes_R H_j(Y;R) \xrightarrow{\varphi} H_k(X \times Y;R) \longrightarrow \bigoplus_{i+j=k-1} \operatorname{Tor}_1^R(H_i(X;R),H_j(Y;R)) \longrightarrow 0$$

- (a) Let *A* be the image  $X \sqcup X \times Y \times [0, \frac{3}{4})$  in  $X \star Y$ . Let *B* be the image of  $Y \sqcup X \times Y \times (\frac{1}{4}, 1]$  in  $X \star Y$ . Verify that *A* and *B* are open subsets of  $X \star Y$ .
- (b) Verify that  $A \cup B = X \star Y$ , A deformation retracts onto (a homeomorphic copy of) X, B deformation retracts onto (a homeomorphic copy of) Y, and  $A \cap B$  deformation retracts onto (a homeomorphic copy of)  $X \times Y$ .
- (c) Write the Mayer–Vietoris sequence on homology associated to the open cover A, B of  $X \star Y$ .
- (d) Verify that the inclusion maps  $X \hookrightarrow X \star Y$  and  $Y \hookrightarrow X \star Y$  are nullhomotopic.
- (e) Deduce that the Mayer–Vietoris sequence simplifies to the short exact sequences

$$0 \longrightarrow H_{k+1}(X \star Y) \longrightarrow H_k(X \times Y) \stackrel{\psi}{\longrightarrow} H_k(X) \oplus H_k(Y) \longrightarrow 0$$

(f) Conclude the theorem.

**Exercise 8.** In this exercise we will prove Proposition IX, following Section 2 of Milnor "Construction of Universal Bundles, II".

- (a) Verify that, by induction, it suffices to prove the result in the case p = 2. Thus we suppose X is an  $n_X$ -connected space and Y is an  $n_Y$ -connected space. We wish to prove that  $X \star Y$  is  $(n_X + n_Y + 2)$ -connected.
- (b) Verify the result in the case that one of X or Y is empty. This establishes the case that  $n_X$  or  $n_Y$  is (-2).
- (c) Show that if X and Y are nonempty, then  $X \star Y$  is path-connected. This establishes the case that  $n_X, n_Y = -1$ .

- (d) **(Bonus)** Suppose that *X* is nonempty and *Y* is path-connected. Show  $X \star Y$  is simply connected. This establishes the case that  $\{n_X, n_Y\} = \{-1, 0\}$ .
- (e) To finish the proof, verify the result in the case that  $n_X$  and  $n_Y$  are both nonnegative. *Hint:*  $X \star Y$  is simply-connected by the previous part. Apply Proposition VIII and a suitable version of Whitehead's theorem.

## 1.3 Joins of simplicial complexes

**Definition XI.** Let *X* and *Y* be abstract simplicial complexes with vertex sets V(X) and V(Y), and simplices S(X) and S(Y). The *join* of *X* and *Y* is the abstract simplicial complex  $X \star Y$  with vertex set and simplices

 $V(X \star Y) = V(X) \cup V(Y) \qquad S(X \star Y) = S(X) \cup S(Y) \cup \{\sigma \cup \tau \mid \sigma \in S(X), \ \tau \in S(Y)\}.$ 

The following proposition states that this construction does indeed correspond to the join of topological spaces.

**Proposition XII.** Let X and Y be abstract simplicial complexes. Then

$$X \star Y | \cong |X| \star |Y|.$$

**Exercise 9.** (Bonus) For abstract simplicial complexes *X* and *Y*, verify that the join  $X \star Y$  satisfies the definition of an abstract simplicial complex.

Exercise 10. (Bonus) Verify Proposition XII.

**Exercise 11.** Let  $\mathcal{P} = (P, \leq)$  be a poset, and  $\Delta(\mathcal{P})$  be its order complex.

- (a) For  $x \in P$ , prove that the link of the vertex x in  $\Delta(\mathcal{P})$  is the join  $\Delta(\mathcal{P}_{< x}) \star \Delta(\mathcal{P}_{> x})$ .
- (b) Let  $\sigma$  be a *p*-simplex in  $\Delta(\mathcal{P})$  corresponding to the chain  $x_0 < x_1 < \cdots < x_p$ . Describe the link of  $\sigma$  as an iterated join.

**Exercise 12.** Let *X* be a simplicial complex and  $\sigma$  a simplex. Prove or disprove:  $\operatorname{Star}_X(\sigma) = \sigma \star \operatorname{Lk}_X(\sigma)$ .