1 Cones and near-cones

1.1 Cone points

Definition I. Let *X* be an abstract simplicial complex. A vertex v_0 of *X* is a *cone point* or *apex* of *X* if, for every simplex σ of *X*, the set $\{v_0\} \cup \sigma$ is a simplex of *X*. If *X* has a cone point, we call it a *cone*.

Equivalently, v_0 is a cone point of X if $X = \text{Star}_X(v_0)$. This implies (by Worksheet #12 Exercise 12)

 $X = v_0 \star \operatorname{Lk}_X(v_0) = \operatorname{Cone}(\operatorname{Lk}_X(v_0)).$

Notably, a complex with a cone point is contractible.

Exercise 1. (Bonus) Suppose that X has a cone point v_0 . Construct an explicit deformation retraction from X to v_0 , and verify that it is continuous.

Exercise 2. (Bonus) Show that every vertex of a simplex Δ^n is a cone point. In particular, a complex may have more than one distinct cone points.

Exercise 3. (Bonus) Let *V* be an infinite set, and let *X* be the 'infinite simplex' on *V*, i.e., the abstract simplicial complex for which all finite nonempty subsets $\sigma \subseteq V$ are simplices. Verify that *X* is contractible.

Exercise 4. Let *X* be a generalized simplicial complex, and consider the analogous definition: Let v_0 be a vertex of *X* with the property that, for any simplex σ of *X*, either v_0 is vertex of σ , or $v_0 \star \sigma$ is a simplex of *X*. Show by example that *X* is not necessarily contractible.

1.2 Near-cones

The definition of a near-cone, and description of its homotopy type, are (mildly modified) from Björner–Kalai "An extended Euler–Poincaré theorem".

Definition II. Let *X* be an abstract simplicial complex with vertex set V(X), and let $v_0 \in V(X)$ be a distinguished vertex. The complex *X* is a *near-cone* if for every simplex σ , if $v_0 \notin \sigma$, then for any vertex $w \in \sigma$ the set $(\sigma \setminus \{w\}) \cup \{v_0\}$ is a simplex of *X*. For a near-cone *X* define the notation

$$B_{v_0}(X) = \{ \sigma \in S(X) \mid \sigma \cup \{v_0\} \notin S(X) \}$$

for the set of simplices of X not contained in $\text{Star}_X(v_0)$.

In other words, X is constructed by gluing each simplex in $B_{v_0}(X)$ to $\operatorname{Star}_X(v_0)$ along its (entire) boundary. Since

$$X \simeq X / \operatorname{Star}_X(v_0)$$

by Worksheet #3 Corollary VIII, we can deduce that *X* is homotopy equivalent to a wedge of spheres (of potentially different dimensions). A 2-dimensional near-cone *X* is shown.

$$X\simeq\bigvee_{\substack{\sigma\in B_{v_0}(X)\\\dim(\sigma)=p}}S^p$$

In particular, the Betti numbers of X are determined by the formula

$$\operatorname{rank}\left(\widetilde{H}_p(X)\right) = \#\{\sigma \in B_{v_0}(X) \mid \dim(\sigma) = p\}.$$

Exercise 5. Let *X* be a near-cone. Show that every simplex of $B_{v_0}(X)$ is a maximal simplex (under inclusion) of *X*. **Exercise 6.** (a) Prove Theorem III. *Hint*: First verify $X = B^{v_0}(X) \cup (\{v_0\} * C)$ for a suitably-defined subcomplex *C*.

(b) Write down a formula for the Euler characteristics of X.

By Worksheet #7 Exercise 5 we know that the *k*-skeleton of an *n*-simplex is either contractible or homotopy equivalent to a wedge of *k*-spheres. The concept of a near-cone gives a convenient framework to compute its homotopy type: to reprove this fact, and determine the number of spheres.

Exercise 7. Let $n \ge 0$ and $0 \le k \le n$. Let $\Delta^{n,k} := (\Delta^n)^{(k)}$ denote the *k*-skeleton of an *n*-simplex.

- (a) Determine the homotopy type of $\Delta^{n,k}$.
- (b) Describe a basis for $H_k(\Delta^{n,k})$ of simplicial *k*-cycles.
- (c) **(Bonus)** The action of the symmetric group on the vertex set [n + 1] of Δ^n extends to a simplicial action on its *k*-skeleton $\Delta^{n,k}$. What can you say about the homology group $H_k(\Delta^{n,k})$ —or the rational homology group $H_k(\Delta^{n,k}; \mathbb{Q})$ —as an S_{n+1} -representation?

Exercise 8. (Bonus) Let $n \ge 0$ and $0 \le k \le n$.

- (a) Let *X* be a *k*-skeleton $(sd(\Delta^n))^{(k)}$ of the barycentric subdivision $sd(\Delta^n)$ of Δ^n . Is *X* a near-cone?
- (b) Let *X* be the barycentric subdivision sd $(\Delta^{n,k})$ of the *k*-skeleton $\Delta^{n,k}$ of Δ^n . Is *X* a near-cone?

Björner gives another application of this concept in "A cell complex in number theory" (Theorem 3.1). Fix $n \ge 0$, and recall from Worksheet #11 Section 1.4 that Δ_n is the abstract simplicial complex with vertices the set of positive primes $p \le n$, and with simplices $\{p_0, p_1, \ldots, p_k \mid p_0p_1 \cdots p_k \le n\}$. We can identify $sd(\Delta_n)$ with the order complex of the poset of squarefree integers $\le n$ ordered by divisibility. The complex Δ_{10} is shown.

Björner relates the Euler characteristics of the complexes Δ_n to deep results and conjectures in number theory, including the Prime Number Theorem and the Riemann Hypothesis.

Exercise 9. (Bonus) Draw Δ_{15} , Δ_{20} , and Δ_{30} .

Exercise 10. Give a description of the homotopy type and the Euler characteristic of Δ_n .