## 1 Cones and near-cones

### 1.1 Cone points

Definition I. Let $X$ be an abstract simplicial complex. A vertex $v_{0}$ of $X$ is a cone point or apex of $X$ if, for every simplex $\sigma$ of $X$, the set $\left\{v_{0}\right\} \cup \sigma$ is a simplex of $X$. If $X$ has a cone point, we call it a cone.
Equivalently, $v_{0}$ is a cone point of $X$ if $X=\operatorname{Star}_{X}\left(v_{0}\right)$. This implies (by Worksheet \#12 Exercise 11)

$$
X=v_{0} \star \operatorname{Lk}_{X}\left(v_{0}\right)=\operatorname{Cone}\left(\operatorname{Lk}_{X}\left(v_{0}\right)\right) .
$$

Notably, a complex with a cone point is contractible.
Exercise 1. (Bonus) Suppose that $X$ has a cone point $v_{0}$. Construct an explicit deformation retraction from $X$ to $v_{0}$, and verify that it is continuous.

Exercise 2. (Bonus) Show that every vertex of a simplex $\Delta^{n}$ is a cone point. In particular, a complex may have more than one distinct cone points.

Exercise 3. (Bonus) Let $V$ be an infinite set, and let $X$ be the 'infinite simplex' on $V$, i.e., the abstract simplicial complex for which all finite nonempty subsets $\sigma \subseteq V$ are simplices. Verify that $X$ is contractible.

Exercise 4. Let $X$ be a $\Delta$-complex, and consider the analogous definition: Let $v_{0}$ be a vertex of $X$ with the property that, for any simplex $\sigma$ of $X$, either $v_{0}$ is vertex of $\sigma$, or $v_{0} \star \sigma$ is a simplex of $X$. Show by example that $X$ is not necessarily contractible.

### 1.2 Near-cones

The definition of a near-cone, and description of its homotopy type, are (mildly modified) from Björner-Kalai "An extended Euler-Poincaré theorem".

Definition II. Let $X$ be an abstract simplicial complex with vertex set $V(X)$, and let $v_{0} \in V(X)$ be a distinguished vertex. The complex $X$ is a near-cone if for every simplex $\sigma$, if $v_{0} \notin \sigma$, then for any vertex $w \in \sigma$ the set $(\sigma \backslash\{w\}) \cup\left\{v_{0}\right\}$ is a simplex of $X$. For a near-cone $X$ define the notation

$$
B_{v_{0}}(X)=\left\{\sigma \in S(X) \mid \sigma \cup\left\{v_{0}\right\} \notin S(X)\right\}
$$

for the set of simplices of $X$ not contained in $\operatorname{Star}_{X}\left(v_{0}\right)$.
In other words, $X$ is constructed by gluing each simplex in $B_{v_{0}}(X)$ to $\operatorname{Star}_{X}\left(v_{0}\right)$ along its (entire) boundary. Since

$$
X \simeq X / \operatorname{Star}_{X}\left(v_{0}\right)
$$

by Worksheet \#3 Corollary VIII, we can deduce that $X$ is homotopy equivalent to a wedge of spheres (of potentially different dimensions).
 A 2-dimensional near-cone $X$ is shown.

Theorem III. Let $X$ be a simplicial complex. If $X$ is a near-cone with $v_{0}$ and $B_{v_{0}}(X)$ as in Definition II, then

$$
X \simeq \bigvee_{\substack{\sigma \in B_{v_{0}(X)} \\ \operatorname{dim}(\sigma)=p}} S^{p}
$$

In particular, the Betti numbers of $X$ are determined by the formula

$$
\operatorname{rank}\left(\widetilde{H}_{p}(X)\right)=\#\left\{\sigma \in B_{v_{0}}(X) \mid \operatorname{dim}(\sigma)=p\right\}
$$

Exercise 5. Let $X$ be a near-cone. Show that every simplex of $B_{v_{0}}(X)$ is a maximal simplex (under inclusion) of $X$.
Exercise 6. (a) Prove Theorem III. Hint: First verify $X=B^{v_{0}}(X) \cup\left(\left\{v_{0}\right\} * C\right)$ for a suitably-defined subcomplex $C$.
(b) Write down a formula for the Euler characteristics of $X$.

By Worksheet \#7 Exercise 5 we know that the $k$-skeleton of an $n$-simplex is either contractible or homotopy equivalent to a wedge of $k$-spheres. The concept of a near-cone gives a convenient framework to compute its homotopy type: to reprove this fact, and determine the number of spheres.

Exercise 7. Let $n \geq 0$ and $0 \leq k \leq n$. Let $\Delta^{n, k}:=\left(\Delta^{n}\right)^{(k)}$ denote the $k$-skeleton of an $n$-simplex.
(a) Determine the homotopy type of $\Delta^{n, k}$.
(b) Describe a basis for $H_{k}\left(\Delta^{n, k}\right)$ of simplicial $k$-cycles.
(c) (Bonus) The action of the symmetric group on the vertex set $[n+1]$ of $\Delta^{n}$ extends to a simplicial action on its $k$-skeleton $\Delta^{n, k}$. What can you say about the homology group $H_{k}\left(\Delta^{n, k}\right)$-or the rational homology group $H_{k}\left(\Delta^{n, k} ; \mathbb{Q}\right)$ —as an $S_{n+1}$-representation?
Exercise 8. (Bonus) Let $n \geq 0$ and $0 \leq k \leq n$.
(a) Let $X$ be a $k$-skeleton $\left(\operatorname{sd}\left(\Delta^{n}\right)\right)^{(k)}$ of the barycentric subdivision $\operatorname{sd}\left(\Delta^{n}\right)$ of $\Delta^{n}$. Is $X$ a near-cone?
(b) Let $X$ be the barycentric subdivision sd $\left(\Delta^{n, k}\right)$ of the $k$-skeleton $\Delta^{n, k}$ of $\Delta^{n}$. Is $X$ a near-cone?

Björner gives another application of this concept in "A cell complex in number theory" (Theorem 3.1). Fix $n \geq 0$, and recall from Worksheet \#11 Section 1.4 that $\Delta_{n}$ is the abstract simplicial complex with vertices the set of positive primes $p \leq n$, and with simplices $\left\{p_{0}, p_{1}, \ldots, p_{k} \mid p_{0} p_{1} \cdots p_{k} \leq n\right\}$. We can identify $\operatorname{sd}\left(\Delta_{n}\right)$ with the order complex of the poset of squarefree integers $\leq n$ ordered by divisibility. The complex $\Delta_{10}$ is shown.


Björner relates the Euler characteristics of the complexes $\Delta_{n}$ to deep results and conjectures in number theory, including the Prime Number Theorem and the Riemann Hypothesis.

Exercise 9. (Bonus) Draw $\Delta_{15}, \Delta_{20}$, and $\Delta_{30}$.
Exercise 10. Give a description of the homotopy type and the Euler characteristic of $\Delta_{n}$.

