PL Morse Theory 1

This worksheet is based (in part) on Bestvina's notes "PL Morse Theory". We will later prove the Theorem I as a special case of the "badness" technique (following Hatcher–Vogtmann) covered on upcoming Worksheet #18.

Theorem I. Let Y be a simplicial complex, and $X \subseteq Y$ a subcomplex. Assume X and Y satisfy the following.

- (*i*) X is a full subcomplex of Y.
- (ii) X is d-connected.
- (iii) For all vertices y_1, y_2 in $Y \setminus X$, there is no edge $\{y_1, y_2\}$.

 $Lk_Y(y) \cap X$, with apex the vertex y, for each vertex $y \in Y \setminus X$.

(iv) For all vertices $y \in Y \setminus X$, the link $Lk_Y(y)$ is (d-1)-connected.

Then Y is d-connected.

 \overline{Y} y_2 Under the assumptions of the theorem, the complex Y is constructed from X by attaching a cone on $Lk_Y(y) =$

Exercise 1. (Bonus) Prove Theorem I directly.

Exercise 2. (Bonus) Let $0 \le k \le n$ and let $\Delta^{n,k} = (\Delta^n)^{(k)}$. Consider the subcomplexes $\Delta^{n-1,k} \subseteq \Delta^{n,k}$ and $Lk_{\Delta^{n,k}}(n)$. Use Theorem I and induction on *n* to conclude that $\Delta^{n,k}$ is (k-1)-connected.

Exercise 3. Prove: in a flag complex (such as the order complex of a poset), the star of a vertex is a full subcomplex.

Exercise 4. Let $0 \le k \le n$ be integers. Let $X^{n,k} = \operatorname{sd}((\Delta^n)^{(k)})$ be the barycentric subdivision of the k-skeleton of an *n*-simplex. This is the order complex of the poset of subsets of [n + 1] of cardinality at most (k + 1), ordered by inclusion. As a warm-up application of Theorem I, we will re-prove that $X^{n,k}$ is (k-1)-connected. We proceed by induction on n, and induction on a filtration of $X^{n,k}$. Observe that Δ^0 is a point, hence is d-connected for all d. Fix $n \ge 1$ and assume by induction that the result holds for all n' < n and all $0 \le k \le n'$.

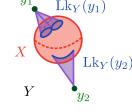
- (a) We define a filtration $X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X_{k+1} = X^{n,k}$ as follows. At each step, verify the description of the newly added vertices, and vertify that there are no edges between the newly added vertices.
 - $X_0 = \operatorname{Star}_{X^{n,k}}(1)$
 - X_1 is the full subcomplex on X_0 and all vertices corresponding to subsets of [n + 1] of cardinality 1 not contained in X_0 , i.e, all vertices $\{a\}$ with $a \neq 1$.
 - X_2 is the full subcomplex on X_1 and all subsets of cardinality 2 not contained in X_1 , i.e., all vertices $\{a_1, a_2\}$ with $1 \neq a_1, a_2$.

 - X_i is the full subcomplex on X_{i-1} and all subsets of [n+1] of cardinality i not contained in X_{i-1} , i.e., vertices $\{a_1, \ldots, a_i\} \not\supseteq 1$.

• $X_{k+1} = X^{n,k}$

- (b) For i = 1, 2, ..., k, a vertex V in $X_i \setminus X_{i-1}$ is a subset of [n+1] of cardinality i not containing the letter 1. Describe $Lk_{X_i}(V)$, and verify that the vertex $V \cup \{1\}$ is a cone point of the link. (Why must we assume $i \leq k$?)
- (c) The subspace X_0 is a cone (with vertex 1) and thus is contractible. Apply Theorem I inductively to deduce that X_1, X_2, \ldots , and X_k are contractible.

1



- (d) Verify that, if n = k, then $X_k = X^{n,k}$. Conclude the result in the case n = k.
- (e) Suppose n > k. Let V be a vertex in $X_{k+1} \setminus X_k$. Show $Lk_{X_{k+1}}(V) \cong X^{k,k-1}$.
- (f) Use Theorem I and the inductive hypothesis on n to conclude Theorem II.

Our main application is a proof of the Solomon–Tits theorem in type A, a central result in the study of arithmetic groups. Let V be a finite-dimensional vector space over a field k. Recall from Worksheet #11 Section 1.5 that the *Tits building* (of type A), denoted $\mathcal{T}(V)$, is the order complex of the poset of proper, nonzero subspaces of V, ordered by inclusion.

Theorem II (Solomon–Tits Theorem, type A). Let V be an n-dimensional vector space. The Tits building $\mathcal{T}(V)$ is (n-3)-connected.

Since T(V) is not contractible, by Worksheet #7 Corollary V, Theorem II is equivalent to the statement that T(V) is a wedge of (n - 2)-spheres.

Exercise 5. In this exercise we will prove Theorem II. The proof follows Section 5.1 of Bestvina's note. We proceed by induction on dim(V), and induction on a filtration of $\mathcal{T}(V)$.

- (a) Verify that Theorem II holds when $\dim(V) = 1$.
- (b) Let *V* be a *k*-vector space of dimension $n \ge 2$, and assume by induction the theorem holds for vector spaces of dimension 1, 2, ..., n 1. Fix a line $L_0 \subseteq V$, and define a filtration $X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X_{n-1} = \mathcal{T}(V)$ as follows. Verify, at each step, the description of the newly added vertices, and vertify that there are no edges between the newly added vertices.
 - $X_0 = \operatorname{Star}_{\mathcal{T}(V)}(L_0)$
 - X_1 is the full subcomplex on X_0 and all lines $L \subsetneq V$ not in X_0 . These are all lines satisfying $L \neq L_0$.
 - X_2 is the full subcomplex on X_1 and all planes $P \subsetneq V$ not in X_0 . These are all planes satisfying $P \not\supseteq L_0$.
 - X_i is the full subcomplex on X_{i-1} and all subspaces $W \subsetneq V$ of dimension *i* not contained in X_0 , that is, all *i*-dimensional subspaces W satisfying $W \not\supseteq L_0$.
 - ÷

•
$$X_{n-1} = \mathcal{T}(V)$$

- (c) For i = 1, 2, ..., n 2, a vertex in $X_i \setminus X_{i-1}$ is a subspace W of dimension i not containing L. Describe $Lk_{X_i}(W)$, and verify that the vertex $W \oplus L_0$ is a cone point of the link. (Where are we using the assumption that $i \le n-2$?)
- (d) The subspace X_0 is a cone (with vertex L_0) and thus is contractible. Apply Theorem I inductively to deduce that X_1, X_2, \ldots , and X_{n-2} are contractible.
- (e) For a vertex W in $\mathcal{T}(V) \setminus X_{n-2}$, show that $Lk_{\mathcal{T}(V)}(W) = \mathcal{T}(W)$.
- (f) Use Theorem I and the inductive hypothesis on *n* to conclude Theorem II.

Exercise 6. (Bonus) Using the proof of Exercise 5 and induction on dim(*V*), describe a basis for $H_{n-2}(\mathcal{T}(V))$. In the case that *k* is a finite field, find a formula for the rank of this group.

Exercise 7. (Bonus) Let $V \cong k^{2n}$ be a symplectic vector space with symplectic form ω . The Tits building $\mathcal{T}^{\omega}(V)$ is the order complex of the poset of isotropic subspaces of V under inclusion. Adapt the proof of Exercise 5 to prove that $\mathcal{T}^{\omega}(V)$ is (n-2)-connected (and hence a wedge of (n-1)-spheres). *Hint*: See Section 5.2 of Bestvina's notes.