1 "Badness" Arguments

This worksheet describes a standard tool used in the study of homological stability to prove that families of complexes are highly connected. It is sometimes called a "link" argument or a "badness" argument. We follow the exposition from Section 2.1 of Hatcher–Vogtmann "Tethers and homology stability for surfaces".

Theorem I. Let Y be an abstract simplicial complex, and $X \subseteq Y$ a subcomplex. Fix $d \ge 0$. Suppose there is a set of "bad" simplices of $Y \setminus X$ satisfying the following conditions

- (i) If σ is a simplex such that no subsimplex $\rho \subseteq \sigma$ (including σ itself) is bad, then σ is in X.
- (ii) If σ , ρ are bad simplices and $\sigma \cup \rho$ is a simplex, then $\sigma \cup \rho$ is bad.
- (iii) For each bad simplex σ , the subcomplex $G_{\sigma} \subseteq Lk_Y(\sigma)$ defined by

$$G_{\sigma} = \{ \rho \in \text{Lk}_{Y}(\sigma) \mid \text{ any bad subsimplex of } \rho \cup \sigma \text{ is contained in } \sigma \}$$

is $(d - dim(\sigma) - 1)$ -connected.

Then the pair (|Y|, |X|) is d-connected.

Recall this means that the inclusion $X \hookrightarrow Y$ induces isomorphisms on π_k for k < d and surjection on π_d .

Corollary II. Fix $d \ge 0$. Suppose $X \subseteq Y$ has a set of "bad" simplices satisfying the conditions of Theorem I.

- If |X| is d-connected, then |Y| is d-connected.
- If |Y| is (d-1)-connected, then |X| is (d-1)-connected.

This result gives us two new strategies to prove that a simplicial complex is highly connected. We can attempt to find a highly connected subcomplex X, or attempt to embed the complex in a highly connected complex Y, in such a way that we can identify a suitable set of "bad" simplices.

Exercise 1. Deduce Corollary II from Theorem I.

Exercise 2. Verify that our statement of PL Morse Theory (Worksheet #18 Theorem I) is the special case of Theorem I and Corollary II where the "bad" simplices are vertices.

Exercise 3. (Bonus) Suppose that Y is a near-cone in the sense of Worksheet #15 Definition II, with associated subcomplex $X = \operatorname{Star}_Y(v_0)$ and additional simplices $B_{v_0}(Y)$. Show that the "bad" simplices $B_{v_0}(Y)$ satisfy the criteria of Theorem I if and only if all simplices in $B_{v_0}(Y)$ have dimension at least (d+1). Reconcile this result with our description from Worksheet #15 of Y as a wedge of spheres.

Exercise 4. Fix integers $n \ge d \ge 1$. Let $A^{n,d}$ be the poset of proper subsets of $[n] = \{1, 2, \dots, n\}$ of size at least d, ordered by inclusion. Prove that the order complex of $A^{n,d}$ is (n-d-2)-connected. *Hint:* Use a badness argument to show that the inclusion of $A^{n,d}$ into the barycentric subdivision of $\partial \Delta^{n-1}$ is highly connected.

Exercise 5. In this exercise, we will prove Theorem I. Suppose simplicial complexes $X \subseteq Y$ have a set of bad simplices satisfying the conditions of the theorem.

- (a) Choose a vertex $x_0 \in X \subseteq Y$ as a basepoint. Let $0 \le p \le d$, and let \mathbb{D}^p be the closed p-disk. Explain why the simplicial approximation theorem implies that a continuous map $(\mathbb{D}^p, \partial \mathbb{D}^p) \to (|Y|, x_0)$ can be represented (up to relative homotopy) as the realization of a simplicial map of abstract simplicial complexes $f: B^p \to Y$ for some triangulation B^p of \mathbb{D}^p .
- (b) Let $0 \le p \le d$. Let $g: B^p \to Y$ be a simplicial map such that $g(\partial |B^p|) \subseteq |X|$. Our goal is to construct a homotopy rel $\partial |B^p|$ of the map $|g|:|B^p|\to |Y|$ so that its image lies in |X|. Explain why this would imply that the map $\iota_*:\pi_k(|X|,x_0)\to\pi_k(|Y|,x_0)$ induced by the inclusion $\iota:X\hookrightarrow Y$ is surjective for all $0\le k\le d$ and injective for $0\le k\le d-1$, and hence conclude the theorem.

- (c) Call a simplex τ of B^p "bad" if $f(\tau) = \sigma$ is a bad simplex of Y. Explain why B^p can have at most finitely many bad simplices. In particular, we can choose a bad simplex τ_0 of B^p that is maximal in dimension. Let $\sigma_0 = f(\tau_0)$.
- (d) Explain why maximality of τ_0 ensures that $f(Lk_{B^p}(\tau_0)) \subseteq G_{\sigma_0}$.
- (e) It is a result from PL topology that—since $|B^p|$ is locally Euclidean p-space—we can assume that $|\mathrm{Lk}_{Z^p}(\tau_0)|$ is homeomorphic to a sphere $S^{p-\dim(\tau_0)-1}$. Explain why the map $\mathrm{Lk}_{Z^p}(\tau_0) \to G_{\sigma_0}$ can be extended to a map $g: D^{p-\dim(\tau_0)} \to G_{\sigma}$ from a simplicial $(p-\dim(\tau_0))$ -disk $D^{p-\dim(\tau_0)}$ with boundary $\mathrm{Lk}_{Z^p}(\tau_0)$.
- (f) Show there is a well-defined map $|f|\Big|_{\partial \tau_0} \star |g|$, and that it is homotopic rel $\mathrm{Lk}_{B^p}(\tau_0)$ to the map $|f|\Big|_{\mathrm{Star}_{B^p}(\tau_0)}$. This homotopy is illustrated below in the case that τ_0 is 0 or 1 dimensional.
- (g) Explain why we can extend this homotopy to a continuous homotopy of |f| that is stationary on the complement of $|\operatorname{Star}_{B^p}(\tau_0)|$ in $|B^p|$. Verify in particular that this homotopy is stationary on $\partial |B^p|$.
- (h) Deduce that—without changing the relative homotopy type of |f|—we can replace the simplicial structure on $\operatorname{Star}_{B^p}(\tau_0)$ by $\partial \tau_0 \star D^{p-\dim(\tau_0)}$ and redefine f on this subcomplex to be $f\Big|_{\partial \tau_0} \star g$.
- (i) Verify we have modified *f* to remove a bad simplex of maximal dimension (possibly replacing it in part with a union of bad simplices of lower dimension), without introducing any new bad simplices of maximal dimension.
- (j) Conclude that, by repeating this procedure a finite number of times, the resulting map will have image contained in *X*. This completes the proof.

