1 Review of CW Complexes: Foundations

1.1 CW complexes

Recall that a CW complex is a topological space (sometimes with additional data of its CW structure) that is constructed inductively by attaching closed *n*-disks along their boundaries, in the following sense.

Definition I. (CW complexes). A CW complex X is a topological space constructed inductively as follows.

- 1. Its 0-skeleton $X^{(0)}$ is a discrete set of points, called the 0-*cells*.
- 2. The *n*-skeleton $X^{(n)}$ is constructed from the (n-1)-skeleton $X^{(n-1)}$ by attaching closed *n*-disks D^n_{α} along their boundaries via continuous *attaching maps* $\phi_{\alpha} : \partial D^n_{\alpha} \to X^{(n-1)}$. This means $X^{(n)}$ is the quotient space

$$q_n: X^{(n-1)} \sqcup_{\alpha} D^n_{\alpha} \longrightarrow X^{(n)}$$

defined by the equivalence relation generated by the identifications $x \sim \phi_{\alpha}(x)$ for all $x \in \partial D_{\alpha}^{n}$.

3. This process may stop after finitely many steps, in which case $X = X^{(n)}$ for some $n \in \mathbb{Z}_{\geq 0}$. Otherwise, we let $X = \bigcup_n X^{(n)}$, topologized with the *weak topology*: A set $A \subseteq X$ is open (respectively, closed) if and only if $A \cap X^{(n)}$ is open (respectively, closed) for all n.

We use the following terminology for CW complexes.

- For each (n, α) , the composite $D^n_{\alpha} \hookrightarrow X^{(n-1)} \sqcup_{\alpha} D^n_{\alpha} \to X^{(n)} \to X$ is called the *characteristic map* Φ^n_{α} .
- The (open) *n*-cell e_{α}^{n} of X is the image of the interior of the disk D_{α}^{n} . The closure $\overline{e_{\alpha}^{n}}$ of e_{α}^{n} in X is called a *closed n*-cell.
- The *dimension* of a nonempty CW complex *X* is the maximal dimension of a cell in *X*. By convention we will say that the empty set has dimension −1.
- A CW complex is called *finite* if it is constructed from finitely many disks D_{α}^{n} .
- A *subcomplex A* of a CW complex *X* is a union of cells such that is closed in *X*. In particular, the closure of each cell is contained in *A*.

The following result follows from the definition of the weak topology.

Proposition II. Let X be a CW complex, and Y a topological space. A map $f : X \to Y$ is continuous if and only if its restrictions $f|_{X^{(n)}}$ to each skeleton $X^{(n)}$ of X are continuous.

Worksheet #1 Exercise 3 and induction over the skeleta of *X* imply the following proposition. In particular, the *n*-skeleton $X^{(n)}$ is a subcomplex of *X*.

Proposition III. Let X be a CW complex with defining maps as in Definition I.

- The image $q_{n+1}(X^{(n)})$ is closed in $X^{(n+1)}$ and hence closed in X.
- The maps $X^{(n)} \to X^{(n+1)}$ and $X^{(n)} \to X$ are embeddings for all $n \ge 0$.
- The quotient map q_n and characteristic map Φ^n_{α} restrict to a homeomorphism from the interior of D^n_{α} to e^n_{α} .
- The cells e_{α}^{n} are disjoint and their union is X.

Exercise 1. (Bonus) Let *X* be a CW complex and $A \subseteq X$ a subcomplex.

- (a) Observe that the *n*-skeleton $X^{(n)}$ is itself a CW complex. Verify that the quotient topology defining $X^{(n)}$ agrees with its weak topology. Verify this topology agrees with its topology as a subspace of *X*.
- (b) Verify $A \subseteq X$ inherits a CW complex structure, and its weak topology agrees with the subspace topology.

We will see that the topology on *X* is also the weak topology on *X* when viewed as a union of closed cells.

Proposition IV. Let X be a CW complex with characteristic maps Φ^n_{α} . Then $\bigsqcup_{n,\alpha} \Phi^n_{\alpha} : \bigsqcup_{n,\alpha} D^n_{\alpha} \longrightarrow X$ is a quotient map.

The following criteria for continuity of maps are a defining feature of CW complexes.

Corollary V. Let X be a CW complex and Y a topological space.

- A subset C of X is closed if and only if it intersects each closed cell in a closed set.
- A map $f: X \to Y$ is continuous if and only if its restrictions to each closed cell of X are continuous.
- A homotopy of maps $F : I \times X \to Y$ is continuous if and only if its restrictions $F_{I \times \overline{e_{\alpha}^{n}}}$ to each closed cell $\overline{e_{\alpha}^{n}}$ are continuous.

Exercise 2. Let *X* be a CW complex.

- (i) Prove Proposition IV.
- (ii) Deduce Corollary V. *Hint:* Recall Worksheet # 1 Exercise 2.

Corollary VI. Let X be a finite CW complex with attaching maps ϕ_{α}^{n} . Let $* = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_N = X$ be a filtration on X by sub-CW-complexes such that $F_{i+1} \setminus F_i$ is a single (open) cell $e_{\alpha_i}^{n_i}$. Then the subcomplexes F_i , and X, are the quotient spaces constructed inductively by attaching $D_{\alpha_i}^{n_i}$ to F_i via the attaching map $\phi_{\alpha_i}^{n_i}$.

Exercise 3. Outline a strategy to prove Corollary VI. You do not need to check details.

CW complexes have the following (mostly favourable) point-set properties.

Proposition VII. Let X be a CW complex.

- X is Hausdorff.
- *X* is normal; disjoint closed subsets have disjoint open neighbourhoods.
- *X* is locally path-connected.
- *X* is connected if and only if it is path-connected.
- The closure $\overline{e_{\alpha}^{n}}$ of the open *n*-cell e_{α}^{n} in X (or in $X^{(n)}$) is equal to the image $\Phi_{\alpha}^{n}(D_{\alpha}^{n})$.
- The characteristic map Φ^n_{α} is a quotient map onto its image.
- *X* is compact if and only if it is finite.
- Any compact subset C of X is contained in a finite subcomplex. In particular, each closed cell of X intersects finitely many (open) cells.
- *X* is locally compact if and only if it is locally finite (each point is contained in finitely many closed cells).

- *X* is locally contractible, i.e., it has a basis of open subsets that are (as subspaces) contractible.
- Any subcomplex A ⊆ X has a neighbourhood U_A in X that deformation retracts to A. For subcomplexes A, B ∈ X, these neighbourhoods can be constructed in such a way that U_{A∩B} = U_A ∩ U_B.
- If X is a CW complex and $A \subseteq X$ a subcomplex, the quotient space $X \to X/A$ inherits a CW complex structure.
- There are homeomorphisms of cells $e^m \times e^n \to e^{m+n}$. Consequently, the product of CW complexes X and Y inherits the structure of a CW complex. In general the weak topology does not agree with the product topology. However, they do agree if either X or Y is locally compact. The topologies agree if X and Y both have at most countably many cells.
- Any covering space of X inherits a CW complex structure.

In fact, the following theorem gives an equivalent definition of a CW complex. This was Whitehead's original definition, and it explains the terminology "CW" ("closure-finite, weak topology").

Theorem VIII. Let X be a space and $\Phi^n_{\alpha} : D^n_{\alpha} \to X$ a family of maps. Then X is a CW complex with characteristic maps $\Phi^n_{\alpha} : D^n_{\alpha} \to X$ if and only if the following conditions hold.

- X is Hausdorff.
- Φ^n_{α} maps $\operatorname{Int}(D^n_{\alpha})$ homeomorphically onto its image $e^n_{\alpha} := \Phi^n_{\alpha}(\operatorname{Int}(D^n_{\alpha})).$
- The cells e_{α}^{n} are disjoint and their union is X.
- (closure-finite) Φ^n_{α} maps ∂D^n_{α} to a finite union of cells of dimension less than n.
- (weak topology) A subset is closed in X if and only if it intersects each closed cell $\overline{e_{\alpha}^n}$ in a closed set.

The closure-finite condition ensures that each closed cell only intersects finitely many open cells.

Exercise 4. Working directly from (i) Definition I and (ii) Theorem VIII, explain why the following are not valid CW complex structures.

- (a) The closed interval *I* as an uncountable union of 0-cells.
- (b) The infinite earring, as a union of one 0-cell and countably infinite 1-cells.
- (c) A closed 2-disk, with one 2-cell and countably infinite 0- and 1-cells in its boundary.

(b) The infinite earring (c) A 2-disk with countably many cells in its boundary

Exercise 5. (Bonus) Prove that the infinite earring is not homotopy equivalent to a CW complex.

Exercise 6. (Bonus) Prove Propositions VII and VIII.