1 Higher Homotopy Groups

Definition I. Let $n \ge 1$ and let $I^n = [0, 1]^n$ be the *n*-dimensional cube. Its boundary is the subspace

 $\partial I^n = \{(x_1, \dots, x_n) \mid x_i \text{ is } 0 \text{ or } 1 \text{ for some } i\}.$

Let (X, x_0) be a based space. Then we define the *nth homotopy group of* (X, x_0) , denoted $\pi_n(X, x_0)$, to be a group of equivalence classes of maps $I^n \to X$ that map ∂I^n to x_0 . Two maps are equivalent if they are homotopic via a homotopy that maps ∂I^n to x_0 at all times. The group operation is induced by concatenation of maps,

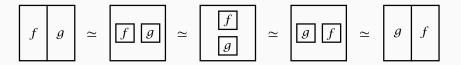
$$(f \bullet g)(s_1, \dots, s_n) = \begin{cases} f(2s_1, s_2, \dots, s_n), & s_1 \in [0, \frac{1}{2}] \\ g(2s_1 - 1, s_2, \dots, s_n), & s_1 \in [\frac{1}{2}, 1] \end{cases}$$

In other words, $\pi_n(X, x_0)$ is the group of homotopy classes (rel ∂I^n) of maps $I^n \to X$ mapping ∂I^n to x_0 .

Exercise 1. (Bonus) Let (X, x_0) be a based space.

- (a) Explain the sense in which every map $(I^n, \partial I^n) \to (X, x_0)$ corresponds to a based map $(S^n, s_0) \to (X, x_0)$ from the *n*-sphere S^n , and every element of $\pi_n(X, x_0)$ corresponds to a homotopy class of based maps $(S^n, s_0) \to (X, x_0)$ rel s_0 . Interpret the group operation in this framework.
- (b) Verify that the concatenation product on $\pi_n(X, x_0)$ is well-defined on equivalence classes.
- (c) Construct an identity element, and inverse elements, for the product operation.
- (d) Verify that the product on $\pi_n(X, x_0)$ defines a group structure.

Exercise 2. The following figure (from Hatcher) is presented as an argument that $\pi_n(X, x_0)$ is an *abelian* group for all $n \ge 2$. Explain this figure and this argument. Why doesn't the argument apply to $\pi_1(X, x_0)$?



For this reason, many sources use additive notation + for the group operation on $\pi_n(X, x_0)$ for $n \ge 2$.

Definition II. By convention, we let $\pi_0(X, x_0)$ denote the set of path-components of X.

In general this set does not have a suitable group structure.

Exercise 3. (Bonus) By convention, I^0 is a point. Show that we can identify $\pi_0(X, x_0)$ with the set of equivalence classes of maps $(I^0, \emptyset) \to (X, x_0)$; alternatively, with the set of homotopy classes of based maps $(S^0, s_0) \to (X, x_0)$.

Proposition III. For all $n \ge 1$ the assignment $(X, x_0) \mapsto \pi_n(X, x_0)$ defines a functor from based spaces to groups.

Proposition IV. *Homotopy groups are homotopy invariants.*

Proposition V. Let $p : (\tilde{X}, \tilde{x_0}) \to (X, x_0)$ be a covering space map. The map $p_* : \pi_n(\tilde{X}, \tilde{x_0}) \to \pi_n(X, x_0)$ is an isomorphism for all $n \ge 2$.

In particular, spaces with universal covers have isomorphic higher homotopy groups to their universal covers'.

Exercise 4. (Bonus) In this problem we prove Propositions III and IV. Fix $n \ge 1$.

- (a) Verify that π_n is functorial with respect to based maps of based spaces $f : (X, x_0) \to (Y, y_0)$. Define the induced map $f_* : \pi_n(X, x_0) \to \pi_n(Y, y_0)$, verify that it is a homomorphism of groups, and verify that the assignment $f \mapsto f_*$ respects identity and composition of maps.
- (b) Prove that if maps $f, g: (X, x_0) \to (Y, y_0)$ are homotopic, then $f_* = g_*$.
- (c) Deduce that a homotopy equivalence $(X, x_0) \rightarrow (Y, y_0)$ induces an isomorphism $\pi_n(X, x_0) \cong \pi_n(Y, y_0)$.

Exercise 5. Prove Proposition V. What does this tell you about the homotopy groups of graphs, *n*-tori, ...?

Exercise 6. Let $\prod_{\alpha} X_{\alpha}$ be a product of path-connected spaces X_{α} . Show that $\pi_n (\prod_{\alpha} X_{\alpha}) \cong \prod_{\alpha} \pi_n (X_{\alpha})$.

Proposition VI. Let X be a path-connected space. Let $n \ge 1$. Then there are (non-canonical) isomorphisms of groups $\pi_n(X, x_0) \cong \pi_n(X, x_1)$ for any $x_0, x_1 \in X$.

We write $\pi_n(X)$ for this abstract group.

Exercise 7. (Bonus) Let $n \ge 2$. Let (X, x_0) be a based space. Let x_1 be another point in the path component of x_0 , and $\gamma : I \to X$ a path from x_1 to x_0 with inverse $\overline{\gamma}(t) := \gamma(1 - t)$.

- (a) Describe how we can use γ to define a change-of-basepoint map $\beta_{\gamma} : \pi_n(X, x_1) \to \pi_1(X, x_0)$. Verify that your construction is well-defined on equivalence classes.
- (b) Show that, if γ is a constant path, then β_{γ} is the identity map.
- (c) Verify that β_{γ} only depends on the homotopy class (rel the endpoints of *I*) of γ .
- (d) Verify that β_{γ} is a group homomorphism.
- (e) Verify $\beta_{\gamma} \circ \beta_{\gamma'} = \beta_{\gamma \bullet \gamma'}$. In particular, β_{γ} is an isomorphism with inverse $\beta_{\overline{\gamma}}$, which proves Proposition VI.
- (f) Consider the special case that $x_0 = x_1$. Show that the assignment $\gamma \mapsto \beta_{\gamma}$ gives a well-defined homomorphism of groups $\pi_1(X, x_0) \to \operatorname{Aut}(\pi_n(X, x_0))$. This defines the *action of* π_1 *on* π_n .

Definition VII. • All spaces are (-2)-connected. • A space is 1-connected if it is simply connected.

- A space is (-1)-connected if it is nonempty. • In general, for $n \ge 0$, a space X is *n*-connected if it is nonempty and $\pi_i(X) \cong 0$ for all $0 \le i \le n$.
- A space is 0-connected if it is path-connected. • X is weakly contractible if $\pi_i(X) \cong 0$ for all $i \ge 0$.

A pair (X, A) is *n*-connected if the inclusion $A \hookrightarrow X$ induces isomorphisms on π_k for k < n and surjection on π_n . Proposition VIII shows a space $X \neq \emptyset$ is *n*-connected iff every map $S^i \to X$ is nullhomotopic for all $0 \le i \le n$. **Proposition VIII.** Let X be a space. The following are equivalent.

- (i) Every map $S^n \to X$ is homotopic to a constant map.
- (ii) Every map $S^n \to X$ extends to a map $D^{n+1} \to X$.
- (iii) $\pi_n(X, x_0) = 0$ for all x_0 in X.

Exercise 8. Prove Proposition VIII. Take care with basepoints and relative homotopies!