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1 Higher Homotopy Groups

Definition I. Let n ≥ 1 and let In = [0, 1]n be the n-dimensional cube. Its boundary is the subspace

∂In = {(x1, . . . , xn) | xi is 0 or 1 for some i}.

Let (X,x0) be a based space. Then we define the nth homotopy group of (X,x0), denoted πn(X,x0), to be a group
of equivalence classes of maps In → X that map ∂In to x0. Two maps are equivalent if they are homotopic via
a homotopy that maps ∂In to x0 at all times.The group operation is induced by concatenation of maps,

(f • g)(s1, . . . , sn) =
{

f(2s1, s2, . . . , sn), s1 ∈
[
0, 1

2

]
g(2s1 − 1, s2, . . . , sn), s1 ∈

[
1
2 , 1

]
In other words, πn(X,x0) is the group of homotopy classes (rel ∂In) of maps In → X mapping ∂In to x0.

Exercise 1. (Bonus) Let (X,x0) be a based space.

(a) Explain the sense in which every map (In, ∂In) → (X,x0) corresponds to a based map (Sn, s0) → (X,x0) from
the n-sphere Sn, and every element of πn(X,x0) corresponds to a homotopy class of based maps (Sn, s0) →
(X,x0) rel s0. Interpret the group operation in this framework.

(b) Verify that the concatenation product on πn(X,x0) is well-defined on equivalence classes.

(c) Construct an identity element, and inverse elements, for the product operation.

(d) Verify that the product on πn(X,x0) defines a group structure.

Exercise 2. The following figure (from Hatcher) is presented as an argument that πn(X,x0) is an abelian group for all
n ≥ 2. Explain this figure and this argument. Why doesn’t the argument apply to π1(X,x0)?
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An especially interesting feature of the table is that along each diagonal the groups

πn+k(S
n) with k fixed and varying n eventually become independent of n for large

enough n . This stability property is the Freudenthal suspension theorem, proved in

§4.2 where we give more extensive tables of these stable homotopy groups of spheres.

Definitions and Basic Constructions

Let In be the n dimensional unit cube, the product of n copies of the interval

[0,1] . The boundary ∂In of In is the subspace consisting of points with at least one

coordinate equal to 0 or 1. For a space X with basepoint x0 ∈ X , define πn(X,x0)

to be the set of homotopy classes of maps f : (In, ∂In)→(X,x0) , where homotopies

ft are required to satisfy ft(∂I
n) = x0 for all t . The definition extends to the case

n = 0 by taking I0 to be a point and ∂I0 to be empty, so π0(X,x0) is just the set of

path-components of X .

When n ≥ 2, a sum operation in πn(X,x0) , generalizing the composition opera-

tion in π1 , is defined by

(f + g)(s1, s2, ··· , sn) =
{
f(2s1, s2, ··· , sn), s1 ∈ [0,

1/2]
g(2s1 − 1, s2, ··· , sn), s1 ∈ [

1/2,1]

It is evident that this sum is well-defined on homotopy classes. Since only the first

coordinate is involved in the sum operation, the same arguments as for π1 show that

πn(X,x0) is a group, with identity element the constant map sending In to x0 and

with inverses given by −f(s1, s2, ··· , sn) = f(1− s1, s2, ··· , sn) .

The additive notation for the group operation is used because πn(X,x0) is abelian

for n ≥ 2. Namely, f +g % g+f via the homotopy indicated in the following figures.

The homotopy begins by shrinking the domains of f and g to smaller subcubes of

In , with the region outside these subcubes mapping to the basepoint. After this has

been done, there is room to slide the two subcubes around anywhere in In as long

as they stay disjoint, so if n ≥ 2 they can be slid past each other, interchanging their

positions. Then to finish the homotopy, the domains of f and g can be enlarged

back to their original size. If one likes, the whole process can be done using just the

coordinates s1 and s2 , keeping the other coordinates fixed.

Maps (In, ∂In)→(X,x0) are the same as maps of the quotient In/∂In = Sn to X

taking the basepoint s0 = ∂I
n/∂In to x0 . This means that we can also view πn(X,x0)

as homotopy classes of maps (Sn, s0)→(X,x0) , where homotopies are through maps

For this reason, many sources use additive notation + for the group operation on πn(X,x0) for n ≥ 2.

Definition II. By convention, we let π0(X,x0) denote the set of path-components of X .

In general this set does not have a suitable group structure.

Exercise 3. (Bonus) By convention, I0 is a point. Show that we can identify π0(X,x0) with the set of equivalence
classes of maps (I0,∅) → (X,x0); alternatively, with the set of homotopy classes of based maps (S0, s0) → (X,x0).

Proposition III. For all n ≥ 1 the assignment (X,x0) 7→ πn(X,x0) defines a functor from based spaces to groups.

Proposition IV. Homotopy groups are homotopy invariants.

Proposition V. Let p : (X̃, x̃0) → (X,x0) be a covering space map. The map p∗ : πn(X̃, x̃0) → πn(X,x0) is an
isomorphism for all n ≥ 2.

In particular, spaces with universal covers have isomorphic higher homotopy groups to their universal covers’.
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Exercise 4. (Bonus) In this problem we prove Propositions III and IV. Fix n ≥ 1.

(a) Verify that πn is functorial with respect to based maps of based spaces f : (X,x0) → (Y, y0). Define the induced
map f∗ : πn(X,x0) → πn(Y, y0), verify that it is a homomorphism of groups, and verify that the assignment
f 7→ f∗ respects identity and composition of maps.

(b) Prove that if maps f, g : (X,x0) → (Y, y0) are homotopic, then f∗ = g∗ .

(c) Deduce that a homotopy equivalence (X,x0) → (Y, y0) induces an isomorphism πn(X,x0) ∼= πn(Y, y0).

Exercise 5. Prove Proposition V. What does this tell you about the homotopy groups of graphs, n-tori, . . . ?

Exercise 6. Let
∏

α Xα be a product of path-connected spaces Xα. Show that πn (
∏

α Xα) ∼=
∏

α πn(Xα).

Proposition VI. Let X be a path-connected space. Let n ≥ 1. Then there are (non-canonical) isomorphisms of groups
πn(X,x0) ∼= πn(X,x1) for any x0, x1 ∈ X .

We write πn(X) for this abstract group.

Exercise 7. (Bonus) Let n ≥ 2. Let (X,x0) be a based space. Let x1 be another point in the path component of x0, and
γ : I → X a path from x1 to x0 with inverse γ(t) := γ(1− t).

(a) Describe how we can use γ to define a change-of-basepoint map βγ : πn(X,x1) → π1(X,x0). Verify that your
construction is well-defined on equivalence classes.

(b) Show that, if γ is a constant path, then βγ is the identity map.

(c) Verify that βγ only depends on the homotopy class (rel the endpoints of I) of γ.

(d) Verify that βγ is a group homomorphism.

(e) Verify βγ ◦ βγ′ = βγ•γ′ . In particular, βγ is an isomorphism with inverse βγ , which proves Proposition VI.

(f) Consider the special case that x0 = x1. Show that the assignment γ 7→ βγ gives a well-defined homomorphism
of groups π1(X,x0) → Aut(πn(X,x0)). This defines the action of π1 on πn.

Definition VII. • All spaces are (−2)-connected.

• A space is (−1)-connected if it is nonempty.

• A space is 0-connected if it is path-connected.

• A space is 1-connected if it is simply connected.

• In general, for n ≥ 0, a space X is n-connected if
it is nonempty and πi(X) ∼= 0 for all 0 ≤ i ≤ n.

• X is weakly contractible if πi(X) ∼= 0 for all i ≥ 0.

A pair (X,A) is n-connected if the inclusion A ↪→ X induces isomorphisms on πk for k < n and surjection on πn.

Proposition VIII shows a space X ̸= ∅ is n-connected iff every map Si → X is nullhomotopic for all 0 ≤ i ≤ n.

Proposition VIII. Let X be a space. The following are equivalent.

(i) Every map Sn → X is homotopic to a constant map.

(ii) Every map Sn → X extends to a map Dn+1 → X .

(iii) πn(X,x0) = 0 for all x0 in X .

Exercise 8. Prove Proposition VIII. Take care with basepoints and relative homotopies!
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