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1 Review: The Cellular Approximation Theorem

Definition I. A continuous map f : X → Y of CW complexes X,Y is called cellular if f
(
X(n)

)
⊆ Y (n) for all n.

Despite the name, a cellular map does not need to map individual cells to cells. For this reason some authors
instead use the term skeletal map.

Theorem II (Cellular Approximation). Every continuous map f : X → Y of CW complexes is homotopic to a cellular
map. If f is already cellular on a subcomplex A ⊆ X , the homotopy may be taken to be stationary on A.

Corollary III. Let X be a CW complex. Then the pair
(
X,X(n)

)
is n-connected, that is, the map πk

(
X(n)

)
→ πk(X)

induced by the inclusion of the n-skeleton X(n) ↪→ X is an isomorphism for k < n and surjective for k = n. More
generally, a pair (X,A) is n-connected if the complement X \A consists of cells of dimension strictly greater than n.

In particular,

• To prove X is n-connected it suffices to show X(n) is.

• X is n-connected if and only if X(n+1) is.

• If X is n-connected, then X(k) is (k − 1)-connected for all k = 0, 1, 2, . . . , n.

• πk

(
X(k+1)

) ∼= πk

(
X(k+2)

) ∼= πk

(
X(k+3)

) ∼= . . . ∼= πk (X).

Corollary IV. The n-sphere Sn is (n− 1)-connected:

πk(S
n) ∼= 0 for all k < n.

Exercise 1. Assuming Theorem II, prove Corollaries III and IV.

Exercise 2. Some sources define a finite CW complex as any topological space X such that there exists a finite nested
sequence

∅ ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn = X

where, for each i = 0, 1, . . . , n, the space Xi is the result of attaching a disk to Xi−1 along its boundary via any
continuous attaching map. This definition has no requirement that the attaching map takes ∂Dd to cells of dimension
less than d.

(a) Explain why a space X constructed in this way is homotopy equivalent to CW complex in the sense of the
standard definition. In particular, up to homotopy equivalence we can assume that the cells are added so that
their dimensions are nondecreasing.

(b) Suppose that a space X is built inductively in this way from one 0-cell and a nonzero finite collection of d-cells,
with no conditions (other than continuity) on the attaching maps. Verify that X is homotopy equivalent to a
wedge of d-spheres.

Exercise 3. (Bonus) In this exercise we will give a partial proof of the cellular approximation theorem, omitting some
significant technical detail. Let X,Y be CW complexes, f : X → Y a continuous map, and A ⊆ X a subcomplex such
that f

∣∣
A

is cellular.

(a) Assume by induction that f has been homotoped rel A to be cellular on X(n−1). Let en be an n-cell of X . Explain
why its image f(en) meets only finitely many cells of Y . Thus there is a cell ed of Y that intersects f(en) that is
maximal dimensional among all such cells.
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(b) If d ≤ n, we are done. Assume d > n. It is possible that f
∣∣
en

is a space-filling curve. It is a nontrivial result (we
will not prove) that it is possible to homotope f

∣∣
X(n−1)∪en

rel X(n−1) so that its image misses a point p in ed.
Explain why we can homotope f

∣∣
X(n−1)∪en

rel X(n−1) so that its image does not intersect ed.

(c) Explain how to construct a homotopy of f
∣∣
X(n) rel

(
X(n−1) ∪A(n)

)
to a cellular map.

(d) Explain how to construct a homotopy of f rel A so that f
∣∣
X(n) is cellular.

(e) Verify the base case.

(f) Explain how (if X is infinite dimensional) to implement this construction to homotope f to a cellular map.

See Hatcher Theorem 4.8 and Lemma 4.10 for the remaining details.
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