Name: ______ Score (Out of 12 points):

1. (5 points) Let X be a set. State the definition of a *metric* on X.

Solution. A metric on X is a function

$$d: X \times X \longrightarrow \mathbb{R}$$

satisfying the following conditions.

- (M1) (Positivity). $d(x,y) \ge 0$ for all $x, y \in X$, and d(x,y) = 0 if and only if x = y.
- (M2) (Symmetry). d(x,y) = d(y,x) for all $x, y \in X$.
- (M3) (Triangle inequality). $d(x,y) + d(y,z) \ge d(x,z)$ for all $x,y,z \in X$.

- 2. A metric space (X,d) is called *bounded* if there exists some real number $R \geq 0$ such that $d(x,y) \leq R$ for all $x,y \in X$. In other words, any pair of points in X are distance at most R apart.
 - (a) (2 points) A metric space that is not bounded is called *unbounded*. Negate the definition to give a precise statement of what it means for a metric space to be unbounded.

Solution. A metric space (X, d) is unbounded if, for all real numbers $R \ge 0$, there exists points $x, y \in X$ such that d(x, y) > R.

(b) (2 points) Show that the real numbers \mathbb{R} with the standard Euclidean metric is unbounded.

Solution. For any real number R > 0, observe that the real numbers 0 and R + 1 have distance d(0, R + 1) = |R + 1 - 0| = R + 1 > R. Thus, by part (a), \mathbb{R} is unbounded.

(c) (3 points) Let (X, d) be a metric space. Suppose that there is some element x_0 in X so that $d(x_0, x) \leq 10$ for all $x \in X$. Prove that X is bounded.

Solution. We will prove this result by showing that $d(x,y) \leq 20$ for all $x,y \in X$. Let $x,y \in X$ be any two elements. Then, by the triangle inequality axiom and the symmetry axiom for the metric d,

$$d(x,y) \le d(x,x_0) + d(x_0,y)$$

$$= d(x_0,x) + d(x_0,y)$$

$$\le 10 + 10$$

$$= 20$$

Thus X is bounded.