Terms and concepts covered: Local degree and its relationship to degree, cellular homology.

Corresponding reading: Hatcher Ch 2.2, "Cellular Homology" (up to Example 2.36), "Mayer–Vietoris Sequences" (up to / including Example 2.46).

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

1. Consider the following short exact sequence of abelian groups,

$$0 \longrightarrow A \longrightarrow B \longrightarrow \mathbb{Z}^d \longrightarrow 0.$$

Verify that $B \cong A \oplus \mathbb{Z}^d$.

- 2. Consider the homomorphism $\mathbb{Z} \xrightarrow{m} \mathbb{Z}$ given by multiplication by $m \in \mathbb{Z}$.
 - (a) Show that there cannot exist a homomorphism $r : \mathbb{Z} \to \mathbb{Z}$ satisfying $r \circ m = id_{\mathbb{Z}}$ unless $m = \pm 1$.
 - (b) Suppose that $\iota : A \to X$ is the inclusion of a subspace *A* into a space *X*. Deduce that, if *A* is a retract of *X*, then $\mathbb{Z} \xrightarrow{m} \mathbb{Z}$ cannot be image of ι under a covariant functor Top $\to \underline{Ab}$ unless $m = \pm 1$.
- 3. (a) Show that S^n has a Δ -complex structure defined inductively by gluing together two *n*-simplices Δ_1^n and Δ_2^n by the identity map on their boundaries.
 - (b) Show that (with suitably chosen orientations) the corresponding simplicial homology group H_n(Sⁿ) ≃ Z is generated by the cycle Δⁿ₁ − Δⁿ₂.
 - (c) Compute the map induced on $H_n(S^n)$ by the reflection that fixes the equator S^{n-1} and interchanges the two simplices.
- 4. Suppose that $f: S^n \to S^n$ has no fixed points. Show that

$$f_t(x) = \frac{(1-t)f(x) - tx}{||(1-t)f(x) - tx||}$$

is a homotopy from f to the antipodal map $x \mapsto -x$. (Why does this homotopy require no fixed points?)

- 5. (a) Let $f: S^n \to S^n$ be a homeomorphism. Show that deg(f) must be ± 1 .
 - (b) Suppose that a continuous map $f: S^n \to S^n$ is not surjective, so f factors through a map

$$S^n \to S^n \setminus \{x\} \hookrightarrow S^n.$$

Show that $\deg(f) = 0$.

- (c) Show that, if $f \simeq g$, then $\deg(f) = \deg(g)$.
- (d) If $f, g: S^n \to S^n$, show that $\deg(f \circ g) = \deg(g) \deg(f)$.
- (e) Let $f: S^n \to S^n$ be a homotopy equivalence. Show that $\deg(f)$ must be ± 1 .
- (f) Show that a reflection $S^n \to S^n$ has degree -1.
- (g) Show that the antipodal map $x \mapsto -x$ is the product of (n + 1) reflections. Conclude that it has degree $(-1)^{n+1}$.
- 6. Suppose that a continuous map $f: S^n \to S^n$ is not surjective. Show that f is nullhomotopic.
- 7. (a) Explain why any map $S^n \to S^n$ that factors $S^n \to D^n \to S^n$ must be degree zero.
 - (b) Construct a surjective map $S^n \to S^n$ of degree zero.
- 8. Let $n \ge 1$. Explain why every map $S^n \to S^n$ can be homotoped to have a fixed point.

- 9. Let $x \in S^n$.
 - (a) Describe a generator of $H_n(S^n, S^n \setminus \{x\})$.
 - (b) Show that $H_n(S^n, S^n \setminus \{x\}) \cong H_n(U, U \setminus \{x\})$ for any neighbourhood U of x.
 - (c) Let $f: S^n \to S^n$ be a continuous map. Let y be a point with a finite preimage $f^{-1}(y) = \{x_1, \ldots, x_m\}$. Let U_1, \ldots, U_m be small disjoint open balls around x_1, x_2, \ldots, x_m , respectively, that map to a small open ball V about y. Show that we can compute the local degree

$$f_*: H_n(U_i, U_i \setminus \{x_i\}) \longrightarrow H_n(V, V \setminus \{y\})$$

by computing the degree

$$f_*: H_{n-1}(U_i \setminus \{x_i\}) \longrightarrow H_{n-1}(V \setminus \{y\})$$

and give a topological description of the latter map.

- 10. We outlined proofs of the following facts about the homology of a CW complex *X*. Verify the facts directly in the case that the CW complex stuctue on *X* is a Δ -complex structure, by considering the simplicial homology groups.
 - (a) If X is finite dimensional, $H_k(X) = 0$ for all $k > \dim(X)$.
 - (b) More generally, for any Δ -complex X, $H_k(X^n) = 0$ for all k > n.
 - (c) The inclusion $X^n \hookrightarrow X$ induces isomorphisms $H_k(X^n) \xrightarrow{\cong} H_k(X)$ for all k < n.
 - (d) The inclusion $X^n \hookrightarrow X$ induces a surjection $H_n(X^n) \twoheadrightarrow H_n(X)$.
- 11. Let *X* be a CW complex. Prove that the path-components of *X* are the path-components of its 1-skeleton *X*¹. Conclude that the map

$$H_0(X^k) \to H_0(X)$$

induced by the inclusion of the *k*-skeleton is an isomorphism for all $k \ge 1$.

12. Let *SX* denote the suspension of a space *X* (Assignment Problem 3 (b)). Explain the homeomorphism $SS^n \cong S^{n+1}$ for all $n \ge 0$. (You do not need to check point-set details). In particular, Assignment Problem 3 (a) is a special case of Assignment Problem 3 (b).

Assignment questions

(Hand these questions in!)

- 1. (Topology Qual, Sep 2017). Prove that for positive integers n, k, there does not exist a covering π : $S^{2n} \to X$ where X is a simplicial complex with $\pi_1(X) \cong \mathbb{Z}/(2k+1)$.
- 2. Mayer-Vietoris.
 - (a) Let X be a space, and let $A, B \subseteq X$ be subspaces whose interiors cover X. Let $C_n(A + B)$ denote the subgroup of the singular *n*-chain group $C_n(X)$ consisting of chains that are sums of a chain in A and a chain in B. Show that following is a short exact sequence of chain complexes.

$$0 \longrightarrow C_n(A \cap B) \xrightarrow{\phi} C_n(A) \oplus C_n(B) \xrightarrow{\psi} C_n(A+B) \longrightarrow 0$$
$$x \longmapsto (x, -x)$$
$$(y, z) \longmapsto y + z$$

(b) We will not prove this carefully, but it is possible to show (by subdividing simplices) that the inclusion of chain complexes

$$C_*(A+B) \to C_*(X)$$

induces isomorphisms on homology groups. Use this fact to deduce the following theorem, and describe the maps Φ and Ψ .

Theorem (The Mayer–Vietoris long exact sequence). Let *X* be a space, and let $A, B \subseteq X$ be subspaces whose interiors cover *X*. Then there is a long exact sequence on homology groups

$$\cdots \longrightarrow H_n(A \cap B) \xrightarrow{\Phi} H_n(A) \oplus H_n(B) \xrightarrow{\Psi} H_n(X) \xrightarrow{\delta} H_{n-1}(A \cap B) \longrightarrow \cdots$$
$$\cdots \longrightarrow H_0(X) \longrightarrow 0.$$

Remark: By applying the same argument to the augmented singular chain complexes, we obtain a version of the Mayer–Vietoris long exact sequence for reduced homology groups (a result you don't need to check):

$$\cdots \longrightarrow \widetilde{H}_n(A \cap B) \xrightarrow{\Phi} \widetilde{H}_n(A) \oplus \widetilde{H}_n(B) \xrightarrow{\Psi} \widetilde{H}_n(X) \xrightarrow{\delta} \widetilde{H}_{n-1}(A \cap B) \longrightarrow \cdots$$
$$\cdots \longrightarrow \widetilde{H}_{-1}(X) \longrightarrow 0.$$

Some sources state this version only in the case that $A \cap B \neq \emptyset$, but the result holds in general as long as we use our calculation that $H_i(\emptyset)$ is \mathbb{Z} in degree i = -1 and 0 for all other degrees i. All nonempty spaces X satisfy $\tilde{H}_{-1}(X) \cong 0$.

(c) Verify the following statement from Hatcher (p150) about the connecting homomorphism δ . You do not need to verify the claim about barycentric subdivision.

"The boundary map $\delta : H_n(X) \to H_{n-1}(A \cap B)$ can easily be made explicit. A class $\alpha \in H_n(X)$ is represented by a cycle z, and by barycentric subdivision or some other method we can choose z to be a sum x + y of chains in A and B, respectively. It need not be true that x and y are cycles individually, but $\partial x = -\partial y$ since $\partial(x + y) = 0$, and the element $\delta \alpha \in H_{n-1}(A \cap B)$ is represented by the cycle $\partial x = -\partial y$, as is clear from the definition of the boundary map in the long exact sequence of homology groups associated to a short exact sequence of chain complexes."

3. Some applications of Mayer–Vietoris.

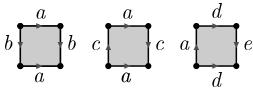
- (a) Use the Mayer–Vietoris sequence to inductively re-compute the homology of S^n . *Hint:* Take A to be a neighbourhood of the top hemisphere, and B a neighbourhood of the bottom hemisphere.
- (b) **Definition (Suspension).** For a topological space *X*, the (*unreduced*) suspension *SX* of *X* is the quotient of $X \times I$ obtained by collapsing $X \times \{0\}$ to one point and collapsing $X \times \{1\}$ to another point.

Use the Mayer–Vietoris long exact sequence to prove that $H_n(SX) \cong H_{n-1}(X)$. *Hint:* First explain why the images of $X \times [0, 0.6)$ and $X \times (0.4, 1]$ in *SX* are contractible.

(c) (Topology Qual, Jan 2020). The *unreduced suspension* \hat{X} of a space X is obtained from $X \times [0, 1]$ by identifying $(x, 0) \sim (y, 0)$ and $(x, 1) \sim (y, 1)$ for all choices of points $x, y \in X$. If S^n is the *n*-sphere, n > 0, compute the homology of the unreduced suspension of $S^n \times \{0, \ldots, k\}$.

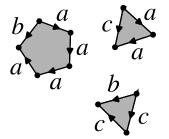
4. Some applications of cellular homology.

(a) **(Topology Qual, Jan 2022).** A space *Y* is constructed by gluing together a torus, a Klein bottle, and a cylinder along the edges labelled *a* below, i.e., *Y* is constructed from three squares using the edge identifications shown.



Calculate the homology of *Y*.

(b) **(Topology Qual, May 2024).** Let *X* be the quotient space defined as the union of the polygons below, modulo the given edge identifications.



(i) Compute the homology of *X*.

(ii) Let $B \subseteq X$ be the image of the loop *b*. Prove that *B* is not a retract of *X*.

5. Some applications of the homology of $\mathbb{C}P^n$ and $\mathbb{R}P^n$.

- (a) State the conclusions of our calculations in class of the cellular homology of $\mathbb{C}P^n$ and $\mathbb{R}P^n$.
- (b) **(Topology Qual, Jan 2021).** Let $\pi : \mathbb{C}^3 \setminus \{0\} \to \mathbb{C}P^2$ be the natural map, sending a point $x \in \mathbb{C}^3 \setminus \{0\}$ to the line $\ell_x \in \mathbb{C}P^2$ connecting x to 0 in \mathbb{C}^3 . Does π admit a section (i.e., a right-inverse)?
- (c) **(Topology Qual, Jan 2018).** Prove that every CW-structure on $\mathbb{R}P^n$ has at least one cell in each dimension $0, 1, \ldots, n$.
- (d) **(Topology Qual, Aug 2020).** Let $f : S^4 \to S^4$ be a map with the property that f(x) = f(y) if y is the antipode of x. Show that $H_4(f) = 0$.