
Math 592 Homework #12 Monday 21 April 2025 at 8pm

Terms and concepts covered: Simplicial approximation theorem, Euler characteristic, Lefschetz fixed-point
theorem

Corresponding reading: Hatcher Ch 2.2, “Cellullar homology”, ‘Homology with coefficients”, Ch 2.3 “Ax-
ioms for homology”. 2.C. “Simplicial Approximation”, up to/including subsection “The Lefschetz Fixed
Point Theorem”,

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. On Homework #9, you computed the map induced on homology by the following simplicial maps.
Re-do this calculation using cellular homology, and its functoriality with respect to cellular maps.

(i) The canonical quotient map q : S2 → RP2.
(ii) The inclusion of the equator f : S1 → S2.

(iii) The map m : S1 → T , where T = S1 × S1, and m is the inclusion of the meridian S1 × {1} .

2. Let ϕ : Zn → Zn be a group homomorphism. Prove that the trace of ϕ is conjugacy-invariant, and
conclude in particular that it does not depend on a choice of basis for Zn.

3. Verify that the ∆-complex structures we used on the torus and RP2 are not triangulations. Can you
further subdivide the simplices to triangulate these spaces?

Assignment questions

(Hand these questions in!)

1. Definition (Euler characteristic). Let X be a finite CW complex. The Euler characteristic χ(X)
of X is defined to by the alternating sum

χ(X) =
∑
i

(−1)ncn,

where cn is the number of n-cells of X .

(a) Prove the following theorem in homological algebra. Recall that the rank of a finitely generated
abelian group is the rank of its free part.

Theorem (Alternating sums). Let (C∗, d∗) be a chain complex of abelian groups, such that
Ck = 0 for k < 0 and

⊕
k Ck is a finite-rank free abelian group. Let Hk denote its kth

homology group. Prove that∑
k≥0

(−1)krank(Ck) =
∑
k≥0

(−1)krank(Hk).

This implies the following.
Theorem (Euler characteristic via homology). Let X be a finite CW complex with Euler
characteristic χ(X). Then

χ(X) =
∑
i

(−1)nrank(Hn(X)).

Notably, this shows that χ(X) only depends on the topology of X (in fact, only the homotopy type
of X), and not on a particular choice of CW complex structure.

(b) Suppose that X and Y are finite CW complexes. Prove that χ(X × Y ) = χ(X)χ(Y ).
(c) State the Euler characteristic of each of the following spaces. No justifcation needed.
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• Euclidean space Rn or disk Dn

• Tree T

• Wedge of circles
∨

n S
1

• Sphere Sn

• n-torus (S1)n

• Real projective space RPn

• Complex projective space CPn

• Orientable closed genus-g surface Σg

(d) Given a finite-sheeted cover p : X̃ → X of a finite CW complex X , describe how to construct a CW
complex structure on X̃ . You do not need to check point-set details.
Hint: Compare to Homework 6 Problem 3(a).
Use your construction to prove the following theorem.

Theorem (Euler characteristic of a cover). Let X be a finite CW complex, and let p : X̃ →
X be a d-sheeted cover for some finite d. Then χ(X̃) = dχ(X).

(e) (Topology Qual, Aug 2020). Show that a finite group G of order 7 cannot act freely on CP5.

(f) (Topology Qual, Jan 2016). Let Σg be a compact connected surface of genus g. Let f : Σg → Σ3 be
a covering space. Show that g must be odd.

2. (Applications of the Lefschetz fixed-point theorem).

(a) (Topology Qual, Aug 2021). Fix n ≥ 1. Let Sn denote the n-sphere, and let f : Sn → Sn be a
(non-identity) deck transformation associated to a certain covering space map Sn → X . What can
you say about the degree of f as a map Sn → Sn?

(b) (Topology Qual, May 2021). Fix some n ≥ 1. Assume we are given a continuous automorphism
f : CPn → CPn of order 5. Show that f must have a fixed point.

(c) Topology Qual, Jan 2025).

(i) For what odd natural numbers k does there exists an n > 0 such that Z/k acts freely on CPn?
Prove your answer.

(ii) For what odd natural numbers k does there exists an n > 0 such that Z/k acts freely on RPn?
Prove your answer.

3. (a) Let X be a CW complex constructed by taking a k-sphere Sk and attaching a (k + 1)-cell ek+1 by a
degree-n attaching map Sk → Sk. Compute the homology of X .

Your answer gives a solution to:

(Topology Qual, Sep 2016). For given k, n ≥ 1, construct a topological space M such that H̃k(M) =

Z/n and H̃k(M) = 0 for all i ̸= k.

(b) Definition (Moore space). Fix an abelian group G and an integer p ≥ 1. A Moore space
M(G, p) is a space such that

H̃k(M(G, p)) =

{
G, k = p
0, k ̸= p.

Let G be a finitely generated abelian group. Explain how to use part (a) and wedge sums to con-
struct a Moore space M(G, p).

Remark: We can take a wedge sum of Moore spaces to construct a space X with specified homology
groups in every homological degree.

4. (Classification of surfaces).

(a) Read Tai-Danae Bradley’s post on the classification of closed surfaces.
https://www.math3ma.com/blog/classifying-surfaces

Use the instructions to classify the following surfaces.
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(b) Definition (Triangulation). A triangulation or simplicial complex structure on a space X is
a ∆-complex structure that satisfies an additional condition: if two simplices σ1 and σ2

intersect, then their intersection must be a single common subsimplex of σ1 and σ2.
It is a nontrivial fact (we will not prove) that every compact surface admits a triangulation.
Read the following proof of the classification theorem for orientable surfaces.

https://www3.nd.edu/˜andyp/notes/ClassificationSurfaces.pdf

Summarize the proof, illustrating the steps in the case of the following triangulation of a torus:

5. Bonus (Homology with coefficients).

Definition (Homology with coefficients in G). Let G be an abelian group, and let X be a
space. Then we define the homology of X with coefficients in G to be the homology of the chain
complex (C∗(X;G), ∂), defined as follows. The nth chain group Cn(X;G) is defined to be the
group of formal linear combinations of singular n-simplices in X with coefficients in G,

C∗(X;G) =

{∑
i

niσi

∣∣∣∣∣ σi a singular n-simplex in X , ni ∈ G

}
.

The differential
∂n : Cn(X;G) → Cn−1(X;G)

is defined by the formula

∂n

(∑
i

niσi

)
=
∑
i,j

ni(−1)jσi|[v0,...,v̂j ,...,vn].

In the case G = Z, observe that this definition is our usual definition of singular homology.

Just as with singular homology, we can define relative homology by setting

Cn(X,A;G) = Cn(X;G)/Cn(A;G)

and we can define reduced homology as the homology of the augmented chain complex

· · · ∂2−→ C1(X,A;G)
∂1−→ C0(X,A;G)

ϵ−→ G −→ 0

Page 3

https://www3.nd.edu/~andyp/notes/ClassificationSurfaces.pdf


Math 592 Homework #12 Monday 21 April 2025 at 8pm

All of our major results on homology (long exact sequence of a pair, Mayer–Vietoris, relation to simpli-
cial homology, relation to cellular homology, etc) hold for homology with coefficients, and the proofs
carry over with minimal modification.

(a) For a ∆-complex X , formulate a definition of simplicial homology for X with coefficients in G =
Z/2Z. (You do not need to prove this, but it will agree with the singular homology groups with
coefficients H∗(X;Z/2Z).) Working directly from your definition, compute the homology groups
of RP2 with coefficients in Z/2Z.

(b) (The universal coefficient theorem for homology). Let X be a space, and G an abelian
group. For each n there is a short exact sequence of abelian groups

0 −→ Hn(X)⊗Z G −→ Hn(X;G) −→ Tor(Hn−1(X), G) −→ 0.

The sequence splits (though not canonically).
We will not prove this theorem (or even define the functor Tor), but you can assume the following
results.

Proposition (Some properties of Tor). Let A, Ai, and B be abelian groups. The Tor functor
satisfies the following.
(i) Tor(A,B) = Tor(B,A)

(ii) Tor (
⊕

i Ai, B) =
⊕

i Tor(Ai, B)

(iii) Tor(A,B) = 0 if A or B is torsion-free
(iv) Tor(A,B) = Tor(T (A), B), where T (A) is the torsion subgroup of A.

(v) Tor(Z/nZ, B) = ker(B
n−→ B)

Use these results to compute the Z/2Z-homology of RPn.

(c) Compute the homology of a Klein bottle with coefficients in Z/2Z.

6. Bonus (Orientable manifolds). You may read Hatcher “Orientations and Homology” (p233) while you
complete this question.

Definition (Local orientation). Let M be an n-dimensional manifold. A local orientation of M
at a point x ∈ M is a choice of generator µx of the infinite cyclic group Hn(M,M \ {x}).

Definition (Orientation). Let M be an n-dimensional manifold. An orientation of M is a
function x 7→ µx assigning to each point in M a local orientation µx ∈ Hn(M,M \{x}), subject
to the following condition: each x ∈ M has a neighbourhood Rn ⊆ M containing an open ball
B of finite radius about x such that the local orientation µy at each y ∈ B are the images of
one generator µB ∈ Hn(M,M \B) under the natural maps Hn(M,M \B) → Hn(M,M \{y}).
If an orientation exists, M is orientable.

Remark: Let R be a ring. There is a notion of a (local) R-orientation of a manifold M using the analogous
definitions with homology with coefficients in R. The theory is particularly important when we let
R = Z/2Z. In fact, every manifold is Z/2Z-orientable!

(a) Definition (Orientation double-cover). Let

M̃ = {µx | x ∈ M,µx is a local orientation of M at x}.

We topologize M̃ as follows: given an open ball B ⊆ Rn ⊆ M of finite radius and genera-
tor µB ∈ Hn(M,M \ B), let U(µB) be the set of all µx ∈ M̃ such that x ∈ B and µx is the
image of µB under the natural map Hn(M,M \ B) → Hn(M,M \ {x}). Then U(µB) is a
basis for a topology on M .

Verify that U(µB) is a basis for a topology on M̃ .
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(b) Prove that the map

M̃ −→ M

µx 7−→ x

is a 2-sheeted cover of M . It is the orientation double-cover of M .

(c) Assume M is connected. Prove that M̃ has two components if and only if M is orientable, and one
component if and only if M is nonorientable.

(d) Deduce that any simply connected manifold is orientable, and more generally a connected mani-
fold M is orientable if π1(M) has no subgroup of index 2.

(e) Prove that M̃ is orientable.

Remark: The following is a very important result about manifolds.

Definition / Theorem (Fundamental class). Let M be a connected, oriented, compact mani-
fold without boundary of dimension n. Then its top homology group is infinite cyclic:

Hn(M) ∼= Z.

A choice of generator for Hn(M) is called a fundamental class of M .
If M is a connected compact manifold without boundary that is not orientable, then Hn(M) =
0.

Let M be a connected, oriented, compact manifold without boundary of dimension n. If M has a finite
triangulation, a fundamental class µ will be the sum of its (appropriately oriented) top-dimensional
simplices.

The natural map Hn(M) → Hn(M,M \ {x}) is an isomorphism for each x ∈ M , so a choice of funda-
mental class defines an orientation of M .

Remark: Let M be a compact orientable manifold. Mathematicians once wondered whether every ho-
mology class of M was the image of a fundamental class of some oriented submanifold of M . Un-
fortunately this is not true, but Thom proved it is close to true. This gives us a very concrete way to
understand the homology classes of M !
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