
Math 592 Homework #3 Friday 31 January 2025 at 8pm

Terms and concepts covered: Path, homotopy of paths, composition of paths. Reparameterization. Loops,
basepoint, fundamental group π1(X,x0) of X based at x0. π1 of a product, π1 as a functor.

Corresponding reading: Hatcher Ch 1.1, “Paths and Homotopy”,“Fundamental group of the circle”, ”In-
duced homomorphisms”.

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. (Constructing the free group). In class, we constructed the free group FS on a set S. Verify that our
construction does indeed satisfy the universal property of the free group.

2. Let H be a group containing a subset S, and let S ↪→ H be the inclusion. In this question we investigate
why, in general, H (along with the map S ↪→ H) could fail to satisfy the universal property of the free
group on S.

(a) Suppose S generates H . Prove H satisfies the “uniqueness” condition of the universal property.

(b) Show by example that, if S does not generate H , then H could fail to satisfy the “uniqueness”
condition of the universal property.

(c) Suppose that the elements of S satisfy some relations (a term we will define formally later in course).
For example, the elements of S could commute, or might have finite order. Show that H will fail
the “existence” condition of the universal property.

3. (Free abelian groups). Recall the universal property of the free group FS on a set S: given any group G
and any map of sets f : S → G, the map f extends uniquely to a group homomorphism f : F (S) → G.
In other words, there is a unique homomorphism f making the following diagram commute.

S

��

f // G

FS

∃! f

>>

(a) Consider the same universal property in the category of abelian groups (so now G must be abelian).
Show that the universal property defines the free abelian group on S, that is, FS

∼=
⊕

S Z.

(b) Why doesn’t the free abelian group on S satisfy the universal property in the category of groups?

4. Definition (Opposite category). Let C be a category. The opposite category C op is a category
defined as follows: The objects of C op are the same as the objects of C . For objects X,Y ∈ C op,
the morphisms are

HomC op(X,Y ) = HomC (Y,X).

The composite f ◦ g of morphisms f, g in C op is defined to be the morphism g ◦ f in C .

Informally, C op is the category C after “reversing all the arrows”. Show that the definition of a con-
travariant functor C → D is equivalent to the definition of a covariant functor C op → D .

5. Let C be a locally small category. (“Locally small” is a condition to deal with set-theoretic issues. All the
categories we encounter will have this property). For each object A ∈ C , we can define two hom functors
from C to Set,

HomC (A,−) and HomC (−, A).
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The first is covariant and the second is contravariant. They are defined as follows.

HomC (A,−) : C −→ Set
B 7−→ HomC (A,B)

[f : B → C] 7−→
[
f∗ :

HomC (A,B) → HomC (A,C)]
ϕ 7→ f ◦ ϕ

]

HomC (−, A) : C −→ Set
B 7−→ HomC (B,A)

[f : B → C] 7−→
[
f∗ :

HomC (C,A) → HomC (B,A)]
ϕ 7→ ϕ ◦ f

]
(a) Verify that, for each object A ∈ C , the maps HomC (A,−) and HomC (−, A) are functors.

(b) Explain the sense in that the forgetful functor Top → Set is “the same”* as the functor HomTop({∗},−).
(*Technically, they are naturally isomorphic functors).

(c) Explain the sense in that the forgetful functor Grp → Set is “the same” as the functor HomGrp(Z,−).

(d) Fix a field k. Consider the forgetful functor k–vect → Set. Is there is k-vector space V so that this
functor is “the same” as Homk–vect(V,−)?

If a functor F : C → Set is naturally isomorphic to a hom functor, then F is called representable.

6. (a) Let f : X → Y and g : Y → X be maps of sets, and suppose that f ◦ g = idY . Show that f is
surjective, and g is injective.

(b) Let f : X → Y and g : Y → X be morphisms in a category C such that f ◦ g = idY . Show that f is
an epimorphism, and g is a monomorphism.

(c) Again let f : X → Y and g : Y → X be morphisms in a category C such that f ◦ g = idY . Show
moreover that the images of f and g under any covariant functor must also be an epimorphism
and a monomorphism, respectively.

7. (Homotopies of paths define an equivalence relation). Let X be a space, and x0, x1 ∈ X . Consider all
paths γ : I → X satisfying γ(0) = x0 and γ(1) = x1. Show that the relation of being path homotopic (ie,
homotopic rel {0, 1}) is an equivalence relation on these paths.

8. (Homotopy of paths respects composition of paths).

(a) Show that homotopy of paths is compatible with composition of paths. In other words, suppose
we have points x0, x1, x2 in a space X . Suppose that paths α and α′ from x0 to x1 are homotopic
rel {0, 1}, and suppose that paths β and β′ from x1 to x2 are homotopic rel {0, 1}. Verify that the
paths α · β and α′ · β′ from x0 to x2 are homotopic rel {0, 1}.

(b) What would happen if we just considered the paths α and β up to homotopy (instead of homotopy
rel {0, 1})? Would homotopy still respect composition of paths?

9. (Loop spaces). For a topological space X with basepoint x0, let ΩX denote the set of loops in X based at
x0. The loop space ΩX has a binary operation given by composition of loops. Explain why (in general)
ΩX fails to be a group with this operation, by considering whether each of the associativity, identity,
and inverse axioms will hold on the level of loops (in contrast to “loops up to path homotopy”).

10. (Paths in Rn).

(a) Let γ : I → Rn be a path from x0 to x1. Use the straight-line homotopy to show that γ is homotopic
rel {0, 1} to any other path in Rn from x0 to x1.

(b) Deduce that π1(Rn, 0) is the trivial group.
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11. In Assignment Problem 2 you will prove π1(S
1) ∼= Z.

(a) Let X be a contractible space. Show that π1(X) is the trivial group.

(b) Conclude that the S1, the torus, and in general the n-torus are not contractible, nor is any product
of the form S1 × Y .

12. (a) Prove that a map of spaces

Z −→ X × Y

z 7−→ (fX(z), fY (z))

is continuous if and only if the component maps fX : Z → X and fY : Z → Y are continuous.

(b) Describe the bijection between paths in X×Y and pairs of paths in X and in Y . Similarly, describe
the bijection between homotopies of maps in X × Y and pairs of homotopies in X and in Y .

(c) Check the details of our proof that

π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0).

13. (a) Given a pair of continuous maps f1 : Z1 → W1 and f2 : Z2 → W2, show that their product is
continuous,

f1 × f2 : Z1 × Z2 −→ W1 ×W2

(z1, z2) 7−→
(
f1(z1), f2(z2)

)
(b) Given homotopy equivalences of spaces X1 ≃ Y1 and X2 ≃ Y2, show that there is a homotopy

equivalence X1 ×X2 ≃ Y1 × Y2.

14. (a) Suppose that f : X → Y is a homeomorphism. Show that, for any subset A ⊆ X , f induces a
homeomorphism f |X−A : (X −A) → (Y − f(A)).

(b) Show that R1 is not homeomorphic to Rn for any n > 1.
Hint: Consider the path components of R1 − {0}.

(c) Show that R2 is not homeomorphic to Rn for any n > 2.
Hint: Consider the fundamental group of (R2 − {0}) ∼= R× S1.

15. For a continuous map f : X → Y , we defined the induced map on fundamental groups

f∗ : π1(X,x0) −→ π1(Y, f(x0))

[γ] 7−→ [f ◦ γ].

Complete our proof that π1 is a functor by checking

• f∗ is well-defined on homotopy classes

• f∗ is a group homomorphism

• (idX)∗ = idπ1(X,x0)

• (f ◦ g)∗ = (f∗) ◦ (g∗)

Assignment questions

(Hand these questions in!)

1. Hint: These results are proved in Hatcher Ch 1.1. You may read their proofs there, but then put the
book away and write your solutions independently!

(a) (Reparameterization preserves homotopy class).
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Definition (Reparameterization). Let γ : I → X be a path in a space X . A reparameteriza-
tion of γ is a path γ ◦ ϕ obtained by precomposing γ by a map ϕ : I → I such that ϕ(0) = 0
and ϕ(1) = 1.

Show that γ and any reparameterization γ ◦ ϕ are homotopic rel {0, 1}.

(b) (The fundamental group is a group). For a space X with basepoint x0, we defined the fundamental
group π1(X,x0) to be the group of loops in X based on x0 up to path homotopy, under composition
of paths. Complete our proof that this is a group, by verifying the following. Let c be the constant
loop at x0, and let γ, γ1, γ2, γ3 be any loops based at x0.

• Associativity: γ1 · (γ2 · γ3) is a reparameterization of (γ1 · γ2) · γ3.
• Identity: γ · c is a reparameterization of γ. (A similar argument shows c · γ ≃ γ).
• Inverses: γ · γ ≃ c, where γ(t) = γ(1− t). (A similar argument shows γ · γ ≃ c).

(c) (π1(X) is well-defined for path-connected X). Prove the following.

Theorem (Change of basepoint). Let X be a space, and let x0 and x1 be two points in X
connected by a path h. Then the change-of-basepoint map

π1(X,x1) −→ π1(X,x0)

[γ] 7−→ [h · γ · h]

is an isomorphism. Here, h is defined as the path h(s) = h(1− s).

Conclude that (up to isomorphism) the fundamental group of X does not depend on the choice of
basepoint, only on the choice of path component of the basepoint. If X is path-connected, it now
makes sense to refer to “the” fundamental group of X and write π1(X) for the abstract group.

2. The goal of this question is to prove this theorem.

Theorem (The fundamental group of S1). Let S1 denote the unit circle in R2. There is an
isomorphism

Φ : Z −→ π1

(
S1, (1, 0)

)
n 7−→ [ωn : t 7→ (cos(2πnt), sin(2πnt))].

Hint: Hatcher proves this result in Theorem 1.7, using an approach that is closely related but not iden-
tical to the one below. If you read Hatcher’s proof, please put the book away as you write your own
solutions.

(a) Verify that Φ(m+ n) and Φ(m) · Φ(n) are homotopic, so Φ is a group homomorphism.

(b) Definition (Covering map). Let p : E → B be a continuous map of topological spaces.
The map p is called a covering map if every point b ∈ B has some neighbourhood Ub with
the following property. The preimage p−1(Ub) ⊆ E is the union of disjoint open sets {Vb,α}
in E such that for each α the restriction p|Vb,α

is a homeomorphism from Vb,α to Ub. In this
case, E is called a covering space of B.

Prove that the map

p : R −→ S1

x 7−→ (cos(2πx), sin(2πx))

is a covering map.

(c) The following homotopy lifting property is a crucial feature of covering maps. We will prove it later
in the course.
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Definition (Lift). Let p : E → B be a covering map, and let f : X → B be a continuous
map. A lift of f is a map f̃ : X → E such that p ◦ f̃ = f .

E

p

��
X

f
//

f̃
>>

B

Theorem (Covering maps have the homotopy lifting property). Let p : E → B be a
covering map, and let Ft : X × I → B be a homotopy of maps X → B. Then given any
lift F̃0 : X → E of F0, there exists a unique lift F̃t : X × I → E of Ft whose restriction to
t = 0 is the lift F̃0.

X × {0} ∼= X
F̃0 //

i

��

E

p

��
X × I

Ft

//

F̃t

∃!

99

B

Note that this theorem gives both existence and uniqueness of F̃t. Briefly explain why the theorem
implies the following two results.

(i) For each path γ : I → S1 starting at (1, 0) and each x ∈ p−1(1, 0) there is a unique lift γ̃ : I → R
starting at x .

(ii) Let Ft : I × I → S1 be a homotopy rel {0, 1} starting at (1, 0) ∈ S1. For each x ∈ p−1(1, 0),
there is a unique homotopy F̃t : I × I → R with F̃0 a path starting at x ∈ R.

(d) Explain why the homotopy lifting property implies that the lifted homotopy F̃t in (ii) must be a
homotopy rel {0, 1}. Hint: Consider the paths t 7→ Ft(0) and t 7→ Ft(1).

(e) Describe the path ω̃n : I → R starting at 0 ∈ R that lifts the loop

ωn : I −→ S1

t 7−→ (cos(2πnt), sin(2πnt)),

and describe the class of paths in R that are homotopic rel {0, 1} to ω̃n.

(f) Prove that Φ is surjective and injective, hence an isomorphism.

3. In this question, we will develop some applications of our calculation π1(S
1) ∼= Z.

(a) Definition (Retraction). Let X be a topological space, and A ⊆ X a subspace. A retraction
r : X → A is a continuous map such that r(a) = a for all a ∈ A. The subspace A is called a
retract of X .

(Note: a deformation retraction from X to A is a homotopy rel A from idX to a retraction r : X → A.)
Suppose that r : X → A is a retraction. Let ι : A → X denote the inclusion of A. Fix a ∈ A. Show
that ι∗ : π1(A, a) → π1(X, a) is injective, and r∗ : π1(X, a) → π1(A, a) is surjective.
Hint: Warm-up Questions 6 (a) and 15.

(b) Explain why no retraction from D2 to ∂D2 = S1 can exist.

(c) Prove the following theorem.

Theorem (Brouwer fixed-point theorem for D2). Let f : D2 → D2 be a continuous map.
Then D2 has a fixed point, that is, there is some x ∈ D2 such that f(x) = x.

Hint: Suppose f : D2 → D2 has no fixed point. Use f to build a retraction from r : D2 → S1.
(Your map r should be constructed in a way that r(x) depends continuously on the data of x and
f(x), but you do not need to prove that r is continuous).
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(d) Recall that a vector field on D2 is an ordered pair (x, v(x)) where x ∈ D2 and v(x) is a continuous
map v : D2 → R2. We view v(x) as a vector based at x. Prove the following theorem.

Theorem. Given a nonvanishing vector field on D2, there exists a point x ∈ S1 where
the vector v(x) points radially outward, and a point y ∈ S1 where the vector v(y) points
radially inward.

Hint: Consider Ft(x) = tx+ (1− t)v|S1(x).

4. (a) Suppose f0, f1 : X → Y are homotopic maps via a homotopy ft. Let x0 ∈ X be a basepoint, and
let h be the path h(t) = ft(x0). Prove that βh ◦ (f1)∗ = (f0)∗, where βh is the change-of-basepoint
map,

βh : π1(Y, f1(x0)) −→ π1(Y, f0(x0))

[γ] 7−→ [h · γ · h]

(b) Use (a) to deduce that if f : X → Y is nullhomotopic, then f∗ : π1(X,x0) → π1(Y, f(x0)) is the
trivial map.

(c) Let f, g : X → Y be homotopic maps, and let

f∗ : π1(X,x0) → π1(Y, f(x0)) and g∗ : π1(X,x0) → π1(Y, g(x0))

be their induced maps. Use part (a) to show that if f∗ is injective, surjective, or trivial, then so is g∗.

(d) Prove the following.

Theorem (π1 is a homotopy invariant). If f : X → Y is a homotopy equivalence, then
f∗ : π1(X,x0) → π1(Y, f(x0)) is an isomorphism.

5. (Bonus). The (unreduced) suspension SX of a space X is the quotient of X × I that collapses X × {0} to
a point and collapses X ×{1} to a distinct point. Suppose that Z is a contractible CW complex and that
X ⊆ Z is a CW subcomplex. Show that the quotient Z/X is homotopy equivalent to the suspension
SX .
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