Terms and concepts covered: Seifert–Van Kampen Theorem, group presentations, π_1 of a graph, π_1 of a CW complex. Covering spaces, lifting properties of covering spaces.

Corresponding reading: Hatcher Ch 1.2 and 1.A (up to Proposition 1A.2), Ch 1.3.

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Show that the free product $*_{\alpha}G_{\alpha}$ of trivial groups G_{α} is trivial.
- 2. Let *G* be a group with presentation $\langle S | R \rangle$, and let *H* be any group. Show that a map $S \to H$ extends to a group homomorphism $G \to H$ if and only if the images of the generators *S* satisfy every relation in *R*.
- 3. Let *G* and *H* be groups with presentations $\langle S_G | R_G \rangle$ and $\langle S_H | R_H \rangle$, respectively. Verify the following. *Hint:* Use Warm-up Problem 2 to verify that the group described by the presentation satisfies the appropriate universal property.
 - (a) $G^{ab} = \langle S_G \mid R_G \cup \{sts^{-1}t^{-1} | s, t \in S_G\} \rangle$
 - (b) $G * H = \langle S_G \cup S_H \mid R_G \cup R_H \rangle$
 - (c) $G \oplus H = \langle S_G \cup S_H \mid R_G \cup R_H \cup \{sts^{-1}t^{-1} \mid s \in S_G, t \in S_H\} \rangle$
 - (d) Let $g: A \to G$, $h: A \to H$ be group homomorphisms. $G *_A H = \langle S_G \cup S_H \mid R_G \cup R_H \cup \{g(a)h(a)^{-1} \mid a \in A\} \rangle$
- 4. Let $\{(X_{\alpha}, x_{\alpha})\}$ be a collection of based topological spaces. Suppose that for each α , there exists some open neighbourhood U_{α} of x_{α} that deformation retracts onto x_{α} . Let $\bigvee_{\alpha} X_{\alpha}$ be the wedge sum obtained by gluing together the points x_{α} to a single point x_0 .
 - (a) Verify the details of our proof-outline from class: $\pi_1(\bigvee_{\alpha} X_{\alpha}, x_0) = *_{\alpha} \pi_1(X_{\alpha}, x_{\alpha})$.
 - (b) **Bonus.** Suppose that the spaces X_{α} are CW complexes and the points x_{α} are any choices of basepoint. Explain why the spaces X_{α} must satisfy the nieghbourhood-deformation-retract condition. *Hint:* This is proven in Hatcher A.4 and A.5. You can assume this fact without proof in our class.
- 5. Consider the decomposition of S^1 into two open intervals $S^1 = A \cup B$ as shown in Figure 1. Use this example to show the Van Kampen theorem requires the hypothesis that $A \cap B$ is path-connected.

Figure 1: $S^1 = A \cup B$

- 6. (a) Describe how to construct the *n*-sphere S^n by gluing two *n*-disks D^n_A and D^n_B by their boundary along an (n-1)-sphere.
 - (b) Assume $n \ge 2$. Decompose S^n into a union of open subsets $S^n = A \cup B$, where A is a neighbourhood of the image of D^n_A , and B is a neighbourhood of the image of D^n_B . See Figure 2. Use the Van Kampen theorem to show $\pi_1(S^n) = 0$.
 - (c) Where does the proof go wrong when n = 1?

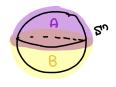


Figure 2: $S^n = A \cup B$

7. Find the error in the following flawed "proof" that the circle has trivial fundamental group.

False proof. Decompose S^1 as a union of open intervals $S^1 = A \cup B \cup C$ as shown in Figure 3. Since A, B, C are open and path-connected, and their pairwise intersections $A \cap B, B \cap C, A \cap C$

Figure 3: $S^1 = A \cup B$

are path-connected, it follows that $\pi_1(S^1)$ is a quotient of the free product $\pi_1(A)*\pi_1(B)*\pi_1(C)$. Since A, B, C are contractible, $\pi_1(A)*\pi_1(B)*\pi_1(C)$ is trivial, so $\pi_1(S^1)$ is trivial.

8. (a) Let *X* be the complement of an open disk in the torus, as in Figure 4. Show that *X* deformation retracts onto the wedge $S^1 \bigvee S^1$. *Hint:* Consider the flat torus.

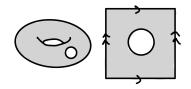


Figure 4: The torus with an open disk deleted

- (b) Deduce that $\pi_1(X)$ is the free group on 2 generators.
- (c) Apply the Van Kampen theorem to the decomposition of the torus T into open sets shown in Figure 5 to give an alternate computation of $\pi_1(T)$.



Figure 5: $T = A \cup B$

(d) Apply the Van Kampen theorem to the decomposition of the closed genus-2 surface Σ_2 into open sets shown in Figure 6 to give an alternate computation of $\pi_1(\Sigma_2)$. Compare your solution to the result of Assignment Problem 2.

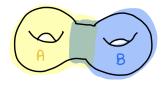


Figure 6: $\Sigma_2 = A \cup B$

- 9. Why, in the Van Kampen theorem, do we assume that each open set is path-connected?
- 10. What could go wrong, in the Van Kampen theorem, if we do not assume that each subset in our decomposition is open?
- 11. (a) Let *G* be a group, and suppose that *G* is generated by *S*. Show that the commutator subgroup of *G* is normally generated by the set

$$\{aba^{-1}b^{-1} \mid a, b \in S\}.$$

(b) Let G_1, G_2, H be groups, and let $f_1 : H \to G_1$ and $f_2 : H \to G_2$ be group homomorphisms. We defined the *free product with amalgamation* $G_1 *_H G_2$ to be the quotient of the free product $G_1 * G_2$ by the normal subgroup generated by the elements

$${f_1(h)f_2(h)^{-1} \mid h \in H}.$$

Show that, if *S* is a generating set for *H*, then $G_1 *_H G_2$ is in fact the quotient by the normal subgroup generated by

$$\{f_1(s)f_2(s)^{-1} \mid s \in S\}.$$

12. Use the results of Assignment Question 1 to give a new proof that $\pi_1(S^n) = 0$ for all $n \ge 2$. *Hint:* Use the CW complex structure on S^n where the 1-skeleton is a point.

Assignment questions

(Hand these questions in!)

- 1. (The fundamental group of a CW complex). In this question, we will continuing developing our program from class on computing the fundamental group of a CW complex.
 - (a) **Proposition (The effect of gluing in disks on** π_1). Let *X* be a path-connected space with basepoint x_0 . Let *Y* be the space obtained from *X* by gluing in a number of disks D^2_{α} along their boundary by attaching maps $\varphi_{\alpha} : \partial D^2_{\alpha} \to X$. (By abuse of notation, we will also use φ_{α} to denote the loop $I \to X$ canonically determined by the map $\varphi_{\alpha} : S^1 \to X$.) For each α , let γ_{α} be a choice of path from x_0 to $\varphi_{\alpha}(1,0)$. Then $\pi_1(Y,x_0)$ is the quotient of $\pi_1(X,x_0)$ by the subgroup normally generated by the loops $\{\gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \overline{\gamma_{\alpha}}\}_{\alpha}$.

This result is proven in Hatcher Proposition 1.26. Explain this proof (with pictures!) in the case that X is a 2-disk with 3 punctures, and Y is constructed by gluing two disks over two punctures via embeddings φ_1, φ_2 , as shown in Figure 7. You may read Hatcher while you write your solution.

(b) **Definition (Cellular map).** A continuous map $f : X \to Y$ between CW complexes X and Y is called a *cellular map* if $f(X^n) \subseteq Y^n$ for all n.

The cellular approximation theorem is a major theorem in algebraic topology.

Theorem (Cellular approximation theorem). Every map $f : X \to Y$ of CW complexes is homotopic to a cellular map. If f is already cellular on a subcomplex $A \subseteq X$, the homotopy may be taken to be stationary on A.

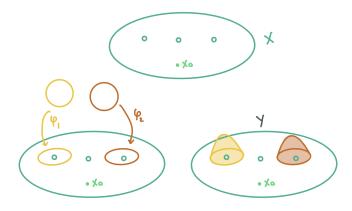


Figure 7: An instance of the spaces *X* and *Y*

Use the cellular approximation theorem to deduce the following theorem.

Theorem (The fundamental group of a CW complex is determined by its 2-skeleton). Let *X* be a path-connected CW complex. Let $\iota_1 : X^1 \to X$ and $\iota_2 : X^2 \to X$ be the inclusion of its 1-skeleton and 2-skeleton, respectively. The induced map $(\iota_1)_* : \pi_1(X^1) \to \pi_1(X)$ is surjective, and the induced map $(\iota_2)_* : \pi_1(X^2) \to \pi_1(X)$ is an isomorphism.

- (c) In a few sentences, summarize our conclusions from class on how to compute a presentation for π_1 of a CW complex.
- 2. (Surfaces of different genera are not homeomorphic, or even homotopy equivalent).

Definition (Connected sum). Let M_1 and M_2 be *n*-manifolds. The *connected sum* $M_1 \# M_2$ is the *n*-manifold constructed as follows. Delete an open *n*-ball B_i from M_i . Let $h : \partial B_1 \to \partial B_2$ be a homeomorphism. Then glue $M_1 \setminus B_1$ to $M_2 \setminus B_2$ via h:

$$M_1 \# M_2 = (M_1 \setminus B_1) \cup (M_2 \setminus B_2) / x \sim h(x) \text{ for all } x \in \partial B_1$$

Fact: If M_1 and M_2 are oriented path-connected closed manifolds, then up to homeomorphism $M_1 # M_2$ is independent of the choice of balls and (orientation-reversing) homeomorphism h.

Definition (Closed genus-*g* surface). The (*closed*) genus-1 surface Σ_1 is a torus. In general the (*closed*) genus-*g* surface Σ_g is the connected sum of *g* tori.

Figure 8: Surfaces of genus 1, 2, 3

- (a) Briefly explain why the surface Σ_g can be realized as the quotient of a 4g-gon by the edge identifications shown in Figure 9.
 Hint: See Figure 10.
- (b) Conclude that

$$\pi_1(\Sigma_g) = \langle a_1, b_1, a_2, b_2, \dots a_g, b_g \mid [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] \rangle \quad \text{where } [a, b] := aba^{-1}b^{-1}.$$

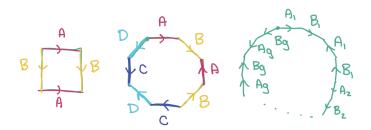


Figure 9: Σ_1 , Σ_2 , and Σ_q as quotients of polygons

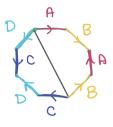
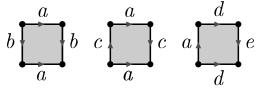


Figure 10

- (c) Show that the abelianization of $\pi_1(\Sigma_g)$ is \mathbb{Z}^{2g} . Conclude that the surfaces Σ_g and Σ_h are not homotopy equivalent for any $g \neq h$.
- 3. In this problem we will apply Van Kampen and/or the results of Assignment Problem 1 to calculate some fundamental groups.
 - (a) Compute the fundamental groups of $\mathbb{R}P^n$ and $\mathbb{C}P^n$ for all *n*. *Hint:* Use the CW complex structures you computed on Homework #2.
 - (b) (QR Exam, August 2019). Let X be a space obtained from three copies of the Möbius strip by attaching their boundaries homeomorphically. Calculate $\pi_1(X)$ in terms of generators and defining relations.
 - (c) (**QR Exam**, **January 2022).** A space *Y* is constructed by gluing together a torus, a Klein bottle, and a cylinder along the edges labelled *a* below, i.e., *Y* is constructed from three squares using the edge identifications shown.



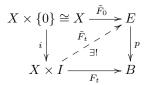
Calculate a presentation for the fundamental group of *Y*.

(d) (QR Exam, January 2024). Fix $g \ge 0$. The closed orientable genus-g surface Σ_g is the boundary of a compact 3-dimensional manifold \mathbf{H}_g called a *genus-g handlebody*, as pictured for g = 3.

The *doubled handlebody* \mathbf{D}_g is obtained by gluing two copies of \mathbf{H}_g along their boundary via the identity map. Concretely, for $\mathbf{H} = \mathbf{H}' = \mathbf{H}_g$ and $I : \mathbf{H} \to \mathbf{H}'$ the the identity map, the space \mathbf{D}_g is the quotient of the disjoint union $\mathbf{H}' \sqcup \mathbf{H}$ by the equivalence relation $I(x) \sim x$ for all $x \in \partial \mathbf{H} = \Sigma_g$. Compute $\pi_1(\mathbf{D}_g)$.

- Math 592
- 4. In this problem, we will prove that covering spaces satisfy the homotopy lifting property we encountered on Homework 2.

Theorem (Covering maps have the homotopy lifting property). Let $p : E \to B$ be a covering map, and let $F_t : X \times I \to B$ be a homotopy of maps $X \to B$. Then given any lift $\tilde{F}_0 : X \to E$ of F_0 , there exists a unique lift $\tilde{F}_t : X \times I \to E$ of F_t whose restriction to t = 0 is the lift \tilde{F}_0 .



Let $p : E \to B$ be a covering map, and let $F_t : X \times I \to B$ be a homotopy of maps $X \to B$. Let $\tilde{F}_0 : X \to E$ be a lift of F_0 . Let $\mathcal{U} = \{U_\alpha\}$ be an open cover of B so that $p^{-1}(U_\alpha)$ can be decomposed as a disjoint union of open sets which are each mapped homeomorphically to U_α by p.

Hint: For this proof, you may want to refer to the proof of Theorem 1.7 in Hatcher. Please put away the textbook as you write your solution.

- (a) We first address uniqueness. Suppose that $\gamma : I \to B$ is a path. Explain why there is a partition $0 = t_0 < t_1 < \ldots < t_n = 1$ of I so that for each $i, \gamma([t_i, t_{i+1}]) \subseteq U_i$ for some $U_i \in \mathcal{U}$.
- (b) Let $\tilde{b} \in p^{-1}(\gamma(0))$. Suppose that $\tilde{\gamma} : I \to E$ and $\tilde{\gamma}' : I \to E$ are two paths starting at \tilde{b} lifting γ . Assume by induction that $\tilde{\gamma}|_{[0,t_i]} = \tilde{\gamma}'|_{[0,t_i]}$. Explain why necessarily $\tilde{\gamma}|_{[t_i,t_{i+1}]} = \tilde{\gamma}'|_{[t_i,t_{i+1}]}$. Conclude that there is a unique lift of γ starting at \tilde{b} .
- (c) Let $\tilde{F}: X \times I \to E$ be a homotopy lifting F_t and extending \tilde{F}_0 . Explain why \tilde{F}_t is unique. *Hint:* Consider $\tilde{F}|_{\{x\} \times I}$.
- (d) Now we address existence. Consider a point $x \in X$. Explain why there is a partition $0 = t_0 < t_1 < \cdots < t_m = 1$ of I (depending on x) and a neighbourhood $N_x \subseteq X$ of x such that, for each i, $F(N_x \times [t_i, t_{i+1}]) \subseteq U_i$ for some U_i in \mathcal{U} . Notably N_x is independent of i. *Hint:* First fix $x_0 \in X$ and consider neighbourhoods $N_t \times (a_t, b_t)$ of (x_0, t) for each $t \in I$. Use compactness of I.
- (e) Fix $x \in X$. Our next goal is to construct a lift \tilde{F}^x of $F|_{N_x \times I}$ extending $\tilde{F}_0|_{N_x \times I}$. Assume by induction that \tilde{F}^x is defined on $N_x \times [0, t_i]$. Describe how to extend \tilde{F}^x to $N_x \times [0, t_{i+1}]$, and deduce that we can construct the desired lift \tilde{F}^x . *Hint:* You may need to replace N_x by a smaller neighbourhood of x.
- (f) For $x, y \in X$, explain why \tilde{F}^x and \tilde{F}^y must agree on $(N_x \cap N_y) \times I$. Explain how we can therefore combine the functions $\{\tilde{F}^x\}_{x \in X}$ to obtain a well-defined, continuous lift \tilde{F} of the homotopy F extending \tilde{F}_0 .
- 5. (Bonus). Read Chapter 2 Sections 2, 3, 4 of May's "Concise course in algebraic topology",

https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf

- (a) State and explain the definition of a groupoid.
- (b) State and explain the definition of a colimit. Show that coproducts and pushouts are special cases of colimits.
- (c) State and explain the groupoid version of the van Kampen theorem.
- (d) Use this theorem to give a new proof that $\pi_1(S^1) \cong \mathbb{Z}$.