Terms and concepts covered: Deck transformations, regular covers.

Corresponding reading: Hatcher Ch 1.3

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let H be a subgroup of a group G.
 - (a) Define the normalizer $N_G(H)$ of H in G.
 - (b) Show that $N_G(H)$ is a subgroup of G.
 - (c) Show that H is contained in $N_G(H)$, and is normal in $N_G(H)$.
 - (d) Show that if *H* is a normal subgroup of *G*, then $N_G(H) = G$.
 - (e) Show that $N_G(H)$ is maximal in the following sense: if J is a subgroup $H \subseteq J \subseteq G$ and H is normal in J, then $J \subseteq N_G(H)$.
- 2. Let X be path-connected, locally path-connected semi-locally simply-connected space. Explain why, if X is simply connected, the only covers of X are homeomorphisms $X \to X$.
- 3. Let X, Y be path-connected, locally path-connected spaces. Assume Y is semi-locally simply connected. Given a map $f:(X,x_0)\to (Y,y_0)$, which path-connected covers \tilde{Y} of Y will f lift to?
- 4. We have illustrated a cover \tilde{X} of $S^1 \vee S^1$ as a graph where every edge is directed and labelled by either a or b. Explain how this convention encodes the data of the covering map, and explain why a deck transformation of \tilde{X} is precisely a graph automorphism that preserves the direction and label of every edge.
- 5. (a) Suppose that *X* has an abelian fundamental group. Explain why every connected cover of *X* is regular.
 - (b) Explain why every connected 2-sheeted cover is regular.
- 6. Let *G* be a group acting on a set *X*.
 - (a) Define *orbit*. Prove that the condition " x_1 and x_2 are in the same orbit" defines an equivalence relation on X.
 - (b) State and prove the orbit-stabilizer theorem.
- 7. **Definition (Group acting on a space, I).** Let G be a group. A group action of G on a space Y is a group homomorphism $\rho: G \to \operatorname{Homeo}(Y)$, where $\operatorname{Homeo}(Y)$ is the group of homeomorphisms $Y \to Y$.

Note: If G were a topological group, we would want to impose extra conditions on our group action to be compatible with the topology. Here we assume that G has no topology, or, equivalently, we may assume that G has the discrete topology.

Verify that the definition of a group action on a space is equivalent to the following.

Definition (Group acting on a space, II). Let G be a group. A group action of G on a space Y is a map

$$\alpha:G\times Y\longrightarrow Y$$

$$(g,y)\longmapsto g\cdot y$$

satisfying three conditions.

(i) For each fixed $g \in G$, the coresponding map is continuous:

$$g: Y \longrightarrow Y$$

 $y \longmapsto g \cdot y$

- (ii) For each $g, h \in G$ and $y \in Y$, $(gh) \cdot y = g \cdot (h \cdot y)$.
- (iii) For $e \in G$ the identity, $e \cdot y = y$ for all $y \in Y$.
- 8. (a) Let *G* be a group with a covering space action on a space *Y* (Assignment Problem 5). Prove that the action is free.
 - (b) Show by example that a free action of a group G on a space Y need not be a covering action. *Hint*: \mathbb{R} acts on \mathbb{R} .
- 9. Let $p: Z \to W$ be a continuous surjective map. Show that, if p is an open map, then it is a quotient map.

Assignment questions

(Hand these questions in!)

- 1. **(The Galois correspondence for covering spaces).** In this question, we assume all spaces are path-connected, locally path-connected, and semi-locally simply-connected.
 - (a) Suppose that H_1, H_2 are subgroups of the fundamental group $\pi_1(X, x_0)$ of a space X, and let $p_1: (X_1, x_1) \to (X, x_0)$ and $p_2: (X_2, x_2) \to (X, x_0)$ be the covering spaces such that $(p_1)_*$ and $(p_2)_*$ induce the inclusions of H_1 and H_2 , respectively, into $\pi_1(X, x_0)$.

Explain why p_1 factors through p_2 (as in the diagram below) if and only if $H_1 \subseteq H_2$.

Conclude from Homework 5 Assignment Problem #1 that, if it factors, the map q is a covering map.

- (b) Give a precise statement of the resulting strengthening of our classification theorem for based covering spaces of X: for every subgroup of $\pi_1(X,x_0)$ there is a unique covering space, and for every inclusion of subgroups $H_1 \to H_2$ there is an intermediate covering map. Remark: There is, in fact, an isomorphism of posets between the subgroups of $\pi_1(X)$ (ordered by
 - *Remark:* There is, in fact, an isomorphism of posets between the subgroups of $\pi_1(X)$ (ordered by inclusion) and the covers of X (ordered by existence of intermediate covers). For a more detailed statement, see Hatcher Chapter 1.3 Problem 24. This result is sometimes called the *Galois correspondence* for covering spaces, in analogy to the Galois correspondence for field extensions.
- (c) Let $X = \mathbb{R}P^2 \times \mathbb{R}P^2$. Draw the diagram of based covering maps of X and intermediate covers, and label the fundamental group of each space.
- 2. **(The action of** $\pi_1(X, x_0)$ **on the fibres).** Let X be a connected, locally path-connected, semi-locally simply-connected space. Let $p: \tilde{X} \to X$ be a covering map, and let α be a path in X. Define a map

$$L_{\alpha}: p^{-1}(\alpha(0)) \to p^{-1}(\alpha(1))$$

as follows: for a point $\tilde{x_0} \in p^{-1}(\alpha(0))$, lift α to the path $\tilde{\alpha}$ starting at $\tilde{x_0}$. Then $L_{\alpha}(\tilde{x_0}) = \tilde{\alpha}(1)$.

- (a) Explain why L_{α} only depends on the homotopy class of α rel $\{0,1\}$.
- (b) Show that L_{α} is a bijection of sets. *Hint:* What is its inverse?

- (c) Show that $L_{\overline{\alpha}\cdot\overline{\beta}}=L_{\overline{\alpha}}\circ L_{\overline{\beta}}$. (Note that we had to replace α by its inverse $\overline{\alpha}$ to make this relationship covariant).
- (d) Now let us restrict to classes $[\gamma] \in \pi_1(X, x_0)$. Conclude that the assignment

$$\pi_1(X, x_0) \longrightarrow \{\text{Permutations of } p^{-1}(x_0)\}$$

$$[\gamma] \longmapsto L_{\overline{\gamma}}$$

defines a group action of $\pi_1(X, x_0)$ on the set $p^{-1}(x_0)$.

(e) Choose five covers \tilde{X} of $S^1 \vee S^1$ from Hatcher's table from p58 (copied below). Describe the permutation on the vertices of \tilde{X} defined by the generator a, and the permutation defined by the generator b. No justification necessary; just state your answer.

(f) Recall the map Φ defined in Homework 5 Assignment Problem 2(d)

$$\Phi: \pi_1(X, x_0) \bmod H \longrightarrow p^{-1}(x_0)$$

$$H[\gamma] \longmapsto \tilde{\gamma}(1)$$

that defined a bijection between $p^{-1}(x_0)$ and the right cosets of $H = p_*(\pi_1(\tilde{X}, \tilde{x_0}))$. Show that the group action of $\pi_1(X, x_0)$ on $p^{-1}(x_0)$ defined above corresponds to the usual action of $\pi_1(X, x_0)$ on the right cosets by right multiplication,

$$[\gamma] \cdot (H[\beta]) = H[\beta \cdot \overline{\gamma}]$$

(g) Deduce that, if H is normal in $\pi_1(X, x_0)$, the action of $\pi_1(X, x_0)$ induces a well-defined action by the quotient group $\pi_1(X, x_0)/H$.

In fact, we can reconstruct the cover $p: \tilde{X} \to X$ from the action of $\pi_1(X, x_0)$ on the fibre $F = p^{-1}(x_0)$ by taking a suitable quotient of $\tilde{X_0} \times F$, where $\tilde{X_0}$ is the universal cover. (This construction is described on p69-70 of Hatcher). Hatcher concludes that the n-sheeted covers of X are classifed by conjugacy classes of group homomorphisms from $\pi_1(X, x_0)$ to the symmetric group S_n .

- 3. (a) Let X be a wedge of n circles, so $\pi_1(X,x_0)=F_n$. Let $h:F_n\to G$ be a surjective group homomorphism. Explain how we could use the results of Assignment Problems 2 and Homework #6 Problem 3 to construct the graph \tilde{X} covering X with fundamental group the subgroup $\ker(h)\subseteq \pi_1(X,x_0)$. Explain moreover how we can use the cover \tilde{X} to determine a free generating set for $\ker(h)$.
 - (b) **(Topology QR Exam, May 2017).** Let F be the free group on a,b. Let $G=\{1,x,x^2\}$ be the cyclic group on three generators written multiplicatively. Let $h:F\to G$ be a homomorphism which sends $a\mapsto x,b\mapsto x^2$. Find free generators of $\mathrm{Ker}(h)$.
 - (c) **(Topology QR Exam, Jan 2017).** Let F be the free group on a,b. Let G be a symmetric group (=group of all permutations) on three elements, and let $x,y \in G$ be elements of order 2 and 3, respectively. Let $h: F \to G$ be a homomorphism which sends $a \mapsto x, b \mapsto y$. Find free generators of $\operatorname{Ker}(h)$.
- 4. (a) Let F_n be the free group on n generators, and F_m the free group on m generators. Show that, if $F_m \cong F_n$, the m = n. Conclude that the number n (called the *rank* of F_n) is an isomorphism invariant. *Hint*: abelianization & structure theorem for finitely generated abelian groups
 - (b) Let X be a connected, finite graph with n vertices and e edges. Show that $\pi_1(X)$ is the free group of rank (e n + 1). You may assume the following result from graph theory.

Proposition (Combinatorics of trees). Let T be a finite tree (which is by definition connected). If T has n vertices, then it has (n-1) edges.

- (c) Let X be a connected m-sheeted cover of the wedge $\bigvee_n S^1$ of n circles. We proved on Homework 6 that $\pi_1(X)$ is a free group. What is the rank of $\pi_1(X)$?
- (d) Prove the following theorem.

Theorem (Schreier index formula). Let F_n be the free group of rank n. A subgroup of index $m \in \mathbb{N}$ in F_n has rank 1 + m(n-1). An infinite-rank subgroup has infinite index.

This theorem shows that the rank of a finite-index subgroup is a function of its index. Moreover, the larger the index (so "smaller" the subgroup in F_n), the larger its rank!

- (e) Show by example that an infinte-index subgroup of F_n can have finite or infinite rank. *Hint:* See Hatcher's table of covering spaces.
- (f) (QR Exam, Aug 2021). Let F_n denote the free group on n letters $\{a, b, c, \ldots\}$.
 - (i) Prove that F_4 does **not** have a finite-index subgroup isomorphic to F_8 .

- (ii) Construct a finite-index subgroup H of F_4 isomorphic to F_7 . Determine (explaining your steps) a free generating set for H, and explain whether H is normal.
- 5. **(Covering spaces as quotients by covering actions).** You may refer to Hatcher p71-73 while you write your solution. See Warm-Up Problem 7 for equivalent definitions of a group action on a space.
 - (a) **Definition (Orbit space).** Let G be a group acting on a space Y. Recall that the *orbit* of a point $y \in Y$ is the subset $G \cdot y = \{g \cdot y \mid g \in G\} \subseteq Y$.

The *orbit space* of this action, denoted Y/G, is the quotient space of Y in which every orbit is collapsed to a point.

Let $p: \tilde{X} \to X$ be a surjective normal covering map with deck group $G(\tilde{X})$. Verify that we can identify X with the orbit space $\tilde{X}/G(\tilde{X})$, and $p: \tilde{X} \to X$ with the quotient map. *Hint:* Warm-up problem 9.

(b) **Definition (Covering space action).** Let G be a group acting on a space Y. Then this action is *covering space action* if it satisfies the following condition. Each $y \in Y$ has a neighbourhood U such that all images g(U) for distinct $g \in G$ are disjoint. In other words, $g_1(U) \cap g_2(U) \neq \emptyset$ implies $g_1 = g_2$.

Let $p: \tilde{X} \to X$ be a connected covering space. Verify that the action of the deck group $G(\tilde{X})$ is a covering space action.

- (c) Now suppose that a group G is acting on a space Y by a covering space action. Prove that the quotient map $p: Y \to Y/G$ is a normal covering space.
- (d) Let G is acting on a space Y by a covering space action, and suppose Y is path-connected. Prove that the Deck group of the cover $p: Y \to Y/G$ is isomorphic to G.
- (e) Let G is acting on a space Y by a covering space action, and suppose Y is path-connected and locally path-connected. Let $p: Y \to Y/G$ be the quotient. Prove that

$$\frac{\pi_1(Y/G, G \cdot y_0)}{p_*(\pi_1(Y, y_0))} \cong G.$$

In particular, if *Y* is simply-connected, then $\pi_1(Y/G) \cong G$. *Hint*: This part is a result from class.

6. (Bonus).

- (a) Let X and Y be path-connected topological spaces. Suppose that $f: X \to Y$ is a homotopy equivalence. Note that f, its homotopy inverse, and the associated homotopies need not respect any basepoints. Consider the induced map $f_*: \pi_1(X,x_0) \to \pi_1(Y,f(x_0))$ for $x_0 \in X$. To what extent do these groups, and the induced map, depend on choice of basepoint x_0 ? To what extent does the induced map on conjugacy classes of subgroups of the fundamental groups depend on choice of basepoint? Discuss. Give precise statements and justify them.
- (b) Let X and Y be path-connected, locally path-connected, semi-locally simply connected topological spaces. Suppose that $f: X \to Y$ is a homotopy equivalence. Let H be a subgroup of X and H' be its image under the induced map $f_*: \pi_1(X,x_0) \to \pi_1(Y,f(x_0))$ for some basepoint $x_0 \in X$. Are the covering spaces of X and Y associated to the conjugacy classes of H and H' (respectively) necessarily homotopy equivalent?