
Math 592 Homework #8 Friday 14 March 2025 at 8pm

Terms and concepts covered: n-simplex; vertices, subsimplices, and faces; boundary and interior of a sim-
plex; ∆-complex; chain complex, n-chains, exactness, homology groups; boundary homomorphisms, cycles
and boundaries, simplicial homology groups, homology classes.

Corresponding reading: Hatcher Chapter 2, Introduction and Section 2.1, “∆-Complexes” and “Simplicial
Homology”.

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. Definition (Convex). A subset C in Euclidean space is convex if it contains the line segment
connecting any pair of its points.

Definition (Convex combination, convex hull). Let X be a subset of Euclidean space. A
convex combination of points in X is a sum of the form

t1x1 + t2x2 + · · · tnxn such that xi ∈ X, ti ∈ R, ti ≥ 0, t1 + · · ·+ tn = 1.

The convex hull of X is the set of all convex combinations of points in X .

(a) Prove that the convex hull of X is the minimal (under inclusion) convex subset containing X .

(b) Prove that the convex hull of X is the intersection of all convex subsets containing X .

2. Let ∆n = [v0, v1, . . . , vn] be the standard n-simplex,

∆n =

{
(t0, t1, . . . , tn) ∈ Rn+1

∣∣∣∣∣ ti ≥ 0,
∑
i

ti = 1

}
.

What are its vertices? Show that the convex hull of any (k + 1) of its vertices is canonically homeomor-
phic to a k-simplex. Conclude that it therefore makes sense topologically (as well as combinatorially)
to call this subspace a k-dimensional subsimplex.

3. Let ∆n = [v0, v1, . . . , vn] be an n-dimensional simplex. For each k ≤ n, how many k-dimensional
subsimplices does ∆n have?

4. Describe the canonical ∆-complex structure on an n-simplex. What is its k-skeleton?

5. In this question, we will find another way to coordinatize an n-simplex. Let

∆0
∗ = {0},

∆n
∗ = {(s1, . . . , sn) ∈ Rn | 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ 1 }

(a) Draw ∆n
∗ for n = 0, 1, 2, 3.

(b) Recall that we defined the standard simplex ∆n = {(t0, t1, . . . , tn) ∈ Rn+1 | ti ≥ 0,
∑

i ti = 1 }.
Show that ∆n is homeomorphic to ∆n

∗ via the map

si = t0 + t1 + · · ·+ ti−1.

6. Consider our coordinatization of the n-simplex,

∆n
∗ = {(s1, . . . , sn) ∈ Rn | 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ 1 }.

Prove that the boundary ∂∆n and the open simplex ∆̊n are indeed the boundary and interior of ∆n,
respectively, in the usual sense of point-set topology, when ∆n is viewed as the subset ∆n

∗ of Rn.
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7. (a) Verify that an n-simplex (as a topological space) is homeomorphic to a closed n-ball.

(b) Verify that a ∆-complex structure on a space X is, in particular, a CW complex structure.

8. (a) Which of our standard CW complex structures on the spheres S1 and S2 are ∆-complex structures?

(b) Is our standard CW complex structure on RP2 a ∆-complex structure?

9. Choose your preferred name for the ∂ symbol.

10. Let X be either of the ∆-complexes shown below. Let Cn(X) denote the associated nth simplicial chain
group, and let ∂n : Cn(X) → Cn−1(X) be the boundary map.

(a) We choose the total orderings of the vertices v1, v2, v3, v4 and u1, u2, u3, u4, respectively, for the two
complexes. Explain how this determines an order on the vertices of every simplex. Label the edges
of each complex with the appropriate direction.

(b) Compute the boundary (that is, the image under ∂n) of the following n-chains.

(i) 2[v1, v2, v3]

(ii) [v1, v2, v3] + [v2, v3, v4]

(iii) [v1, v2, v3]− [v2, v3, v4]

(iv) [u1, u2]− [u1, u3] + [u2, u3]

(v) [u1, u2]− [u1, u3] + [u2, u3] + [u3, u4]

(c) Explain for each calculation how this boundary relates to your intuitive geometric understanding
of “boundary”.

11. Let X be a ∆-complex. Let Cn(X) denote the nth simplicial chain group, and let ∂n : Cn(X) → Cn−1(X)
be the boundary map.

(a) Verify that ∂n ◦ ∂n+1 = 0.

(b) Give a geometric interpretation of the equation ∂n ◦ ∂n+1 = 0, in the spirit of ”a boundary has no
boundary”.

12. (a) Let u, v be vertices in a simplicial complex joined by an edge. What is the relationship between the
(oriented) edge [u, v] and the (oriented) edge [v, u]? What is the relationship between the 1-chains
[u, v] and −[v, u], and the relationships between their boundaries?

(b) Let ∆n = [v0, v1, . . . , vn] be an n-simplex, and τ a permutation in Sn+1. Show that

∂n([vτ(0), vτ(1), . . . , vτ(n)]) =

{
∂n([v0, v1, . . . , vn]) if τ is an even permutation

−∂n([v0, v1, . . . , vn]) if τ is an odd permutation.

Conclude that our ordering of the vertices does matter in our computation of the differential—
different orders result in different signs—but order does not matter up to even permutations.

13. Let (C∗, d∗) be a chain complex, and suppose it is exact at every point Cn. Such sequences are called
exact sequences. What is the homology of (C∗, d∗)?
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14. Let (C∗, d∗) be a chain complex supported in degree n, that is,

· · · −→ 0 −→ 0 −→ Cn −→ 0 −→ 0 −→ · · · −→ 0.

What is the homology of (C∗, d∗)?

15. Let (C∗, d∗) be a chain complex.

(a) Suppose that the differential dn is identically zero for some n.

· · · dn+1−−−→ Cn
dn=0−−−→ Cn−1

dn−1−−−→ · · ·

Show that Hn−1 = ker(dn−1), and Hn = Cn/im(dn+1).
(b) Suppose the differential dn is identically zero for every n. Show that Hn = Cn for every n.

16. Compute the simplicial homology of the disjoint union of n points.

17. Compute the simplicial homology of a 1-simplex.

18. Compute the simplicial homology of S1 with each of the following ∆-complex structures, with the
given orientations of the edges.

19. Compute the simplicial homology groups of the wedge
∨

k S
1 of k circles.

20. Let X be a ∆-complex, and Cn(X) its nth simplicial chain group.

(a) Show that C0(X) = ker(∂0), so C0(X) is the group of 0-cycles. Conclude that, topologically, a
0-cycle is any linear combination of vertices of X .

(b) Show that two vertices in C0(X) are homologous exactly if they are connected via a path of edges
in X .

(c) Conclude that H0(X) consists of formal sums of equivalence classes of vertices of X , where two
vertices are equivalent if they are in the same path-component of X .

(d) Explain the sense in which H0(X) “is” the free abelian group on the path components of X .

21. (a) Let (C∗, d∗) be a chain complex. Explain why, if the nth homology group Hn has rank N , then the
nth chain group Cn must have had rank at least N .

(b) Let X be a space. We will show that the homology groups are homeomorphism invariants (in fact,
homotopy invariants). Explain why, if if the nth simplicial homology group Hn(X) has rank N ,
then any ∆-complex structure on X must have at least N simplices of dimension n.

22. Review the structure theorem for finitely generated abelian groups.

23. Let A be a square matrix with entries in a commutative unital ring R. Recall that A is invertible over R if
it has a 2-sided inverse matrix with entries in R.

(a) Suppose that A has entries in Z, so we may view A as a matrix over Z or over Q. Show by ex-
ample that A may be invertible over Q but not over Z. Explain why, if A is invertible over Z, it is
necessarily invertible over Q.

(b) Show that A is invertible over R if and only if its determinant is a unit in R. In particular, a matrix
with entries in Z is invertible over Z if and only if it has determinant ±1.

(c) Explain why a matrix with entries in a field k is invertible over k if and only if it is invertible over
any field extension of k.
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Assignment questions

(Hand these questions in!)

0. (Optional). Submit course feedback to Jenny in our (optional, anonymous) midterm evaluation survey:

https://forms.gle/6SsfEGps6rULWW9t5

1. (Covering spaces as quotients by covering actions, ctd). This is a continuation of Assignment Problem
5 from Homework #7. You may refer to Hatcher p72-73 while you write your solution to this problem.

(a) On Homework #5 Problem 2(f), you constructed the covers of the torus associated to the subgroups
4Z×Z, Z× 4Z, and 2Z× 2Z of its fundamental group Z2. Briefly explain/illustrate how you could
construct these covering spaces using a suitable action of the groups 4Z× Z, Z× 4Z, and 2Z× 2Z,
respectively, on the universal cover R2 of the torus.

(b) Suppose we have a covering space action of a group G on a simply connected space Y . Let H1 ⊆
H2 ⊆ G be subgroups. Briefly explain how to use the action of H1, H2 on Y to construct the
intermediate cover q : X1 → X2 defined in Homework 7, Assignment Problem #1. What happens
in the special cases H1 = 0 or H2 = G? You do not need to check details.

(c) Prove the following result.

Proposition. A free action of a finite group on a Hausdorff space Y is a covering space
action.

(d) In 1-2 sentences, explain why, for n ≥ 2, the defining quotient map Sn → RPn is the universal
cover.
Remark: In contrast, the map S2n+1 → CPn is not a covering map. Its fibres are not discrete.

2. For each of the following spaces, define a generalized simplicial complex structure on the space, and
compute its simplicial homology groups.

(a) a 2-simplex (b) S2 (c) a torus (d) a Mobius band

3. Definition (Morphism of chain complexes). A morphism f∗ of chain complexes or chain map
from (C∗, ∂∗) to (D∗, δ∗) is a sequence of group homomorphisms fn : Cn → Dn making the
following diagram commute.

. . . Cn+1 Cn Cn−1 . . .

. . . Dn+1 Dn Dn−1 . . .

∂n+1

fn+1

∂n

fn

∂n−1

fn−1

δn+1 δn δn−1

(a) Verify that a morphism f∗ of chain complexes induces, for each n, well-defined group homomor-
phisms on the homology groups

fn : Hn(C∗) → Hn(D∗).

(b) Definition (Quasi-isomorphism). A morphism of chain complexes f∗ : (C∗, ∂∗) → (D∗, δ∗)
is a quasi-isomorphism if the maps induced on homology are all isomorphisms.

Give an example of a quasi-isomorphism of chain complexes where at least one map fn is not an
isomorphism.

4. (Homomorphisms of free abelian groups). Let A be an n × n integer matrix, viewed as Z-linear map
from Zn to Zn.
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(a) Suppose that A has rank n. Prove that the kernel of A is trivial.
(Note: Here we mean ‘rank’ in the usual sense from linear algebra, for example, it is the rank of A
when A is viewed as a matrix with entries in Q).

(b) Show by example that, even if A has rank n, it need not be surjective.

(c) The cokernel of a map of abelian groups is the quotient of its codomain by its image. Prove or find
a counterexample: if the map A has rank n, then the cokernel of A must be finite.

(d) Prove the Z-module version of the rank-nullity theorem: If A is an (m × n) matrix of rank k, then
its image is a free abelian subgroup of Zm of rank k, and its kernel is a free abelian subgroup of Zn

of rank (n− k).

5. Let A be a square matrix with entries in a commutative unital ring R. Recall we say A is invertible over
R if it has a 2-sided inverse matrix with entries in R. See Warm-up Problem 23.

Definition / Theorem (Smith normal form). Let A be an m× n matrix over a principal ideal
domain R. There exists an m × m matrix S and an n × n matrix T such that S and T are
invertible over R, and

SAT =



α1 0 0 · · · 0
0 α2 0 · · · 0

0 0
. . . 0

... αr

...
0

. . .
0 · · · 0


where the diagonal entries αi satisfy αi|αi+1 for all 1 ≤ i ≤ r. The matrix A is called the

Smith normal form of A. The elements αi are unique up to multiplication by a unit in R. They
are called the invariant factors of A.

We are interested in the case R = Z.
Note that, since S, T are invertible, the rank of A is equal to the rank of its Smith normal form.

(a) Let A be a Z-linear map Zn → Zm with invariant factors α1, α2, . . . αr. Prove that the cokernel of
A is isomorphic to Zm−r ⊕

⊕
i Z/αiZ. Conclude that Smith normal form can therefore be used to

put a quotient of a free abelian group Zm into standard form (standard in the sense of the structure
theorem for finitely generated abelian groups), by writing generators for the kernel as the columns
of a matrix.

Remark: In fact, any proof of the structure theorem is likely implicitly a proof of exis-
tence/uniqueness of Smith normal form.

(b) An integer matrix can be put in Smith normal form using the following row and column opera-
tions, which are invertible over Z.

R1. swap rows Ri and row Rj

R2. multiply row Ri by −1

R3. replace row Ri by Ri + nRj for some row
Rj ̸= Ri and n ∈ Z

C1. swap columns Ci and row Cj

C2. multiply column Ci by −1

C3. replace column Ci by Ci+nCj for some row
Cj ̸= Ci and n ∈ Z

To transform A into its Smith normal form, we use the following general steps. You may (if you
wish) read a detailed description in the following handout

https://www3.nd.edu/˜sevens/smithform.pdf

.

• Let d be the gcd of all entries of A. Use row and column operations, and the Euclidean algo-
rithm, to transform the matrix so that some matrix entry equal to d.
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Remark: Observe that the row and column operations do not change the gcd.
• Use row and column swaps (R1 and C1) to place d in entry (1, 1).
• Use row and column operations R3 and C3 to clear the first row and first column, to obtain a

matrix of the form 
d 0 · · · 0
0
...
0

A′

 .

• Repeat the procedure on the matrix A′.

Remark: Each row operation corresponds to multiplying A on the left by an invertible
integer elementary matrix. Each column operation corresponds to multiplying A on the
right by an invertible integer elementary matrix. Thus, by keeping track of the sequence of
row and column operations applied, we can determine the matrices S and T as products
of elementary matrices.

Explain and illustrate the steps to transform the following matrix into its Smith normal form.

A =

[
4 6 6
8 4 12

]
(You do not need to compute S and T ). Verify your answer by going to the website

https://sagecell.sagemath.org/

and entering the lines
A = matrix([[4, 6, 6],[8, 4, 12]])

A.smith_form()

When you hit “Evaluate”, SAGE will give you three matrices: the Smith normal form of A, and the
matrices T and S.

(c) Let A be an m× n integer matrix, and let B be an ℓ×m integer matrix, such that BA = 0.

Zn Zm ZℓA

0

B

Prove that B factors through a Z-linear map B : Zm/im(A) → Zℓ, and that

ker(B) = ker(B)/im(A).

(d) Prove the following.
Theorem (Smith normal form and homology computations). Let A be an m × n integer
matrix, and let B be an ℓ×m integer matrix, such that BA = 0.

Zn Zm ZℓA

0

B

Then

ker(B)/im(A) = Zm−r−s ⊕
r⊕

i=1

Z/αiZ

where r = rank(A), s = rank(B), and α1, . . . , αr are the invariant factors of A.
(e) Use part (d) and SAGE to compute the homology of the following chain complex.

0 −→ Z2


−30 −54
−16 −55
3 9
−2 7


−−−−−−−−−−→ Z4

41 −90 −178 −162
34 −74 −144 −134


−−−−−−−−−−−−−−−−−−−−→ Z2 −→ 0
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6. (Bonus). Let K be a compact space with k0 ∈ K. Let X be a CW complex. Let f : K → X be a
continuous map.

(a) Suppose K is path-connected and locally path-connected. Prove that the image f∗(π1(K, k0)) is
finitely generated.

(b) Now only assume that K is path-connected. Must the group f∗(π1(K, k0)) be finitely generated?
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