Midterm Exam II

Math 592 26 March 2025 Jenny Wilson

Name: _

Instructions: This exam has 5 questions for a total of 16 points.

The exam is **closed-book**. No books, notes, cell phones, calculators, or other devices are permitted. Scratch paper is available.

Fully justify your answers unless otherwise instructed. You may quote any results proved in class, on a quiz, or on the homeworks without proof. Please include a complete statement of the result you are quoting.

You have 90 minutes to complete the exam. If you finish early, consider checking your work for accuracy.

Question	Points	Score
1	4	
2	4	
3	4	
4	3	
5	1	
Total:	16	

Notation

- I = [0, 1] (closed unit interval)
- $D^n = \{x \in \mathbb{R}^n \mid |x| \le 1\}$ (closed unit *n*-disk)
- Sⁿ = ∂Dⁿ⁺¹ = {x ∈ ℝⁿ⁺¹ | |x| = 1} (unit n-sphere) (we may view S¹ as the unit circle in C)
- $S^{\infty} = \bigcup_{n>1} S^n$ with the weak topology
- Σ_g closed genus-g surface
- $\mathbb{R}\mathbf{P}^n$ real projective *n*-space
- $\mathbb{C}\mathbf{P}^n$ complex projective *n*-space

1. (4 points) Let $n \ge 2$. Let S^n denote the *n*-sphere, and let $x_0 \in S^n$ be a fixed basepoint. Let *T* denote the torus, and fix a basepoint $y_0 \in T$. Give an explicit proof that every based map

$$f: (S^n, x_0) \to (T, y_0)$$

is nullhomotopic via a *based* homotopy, i.e., a homotopy stationary on x_0 .

Please include a complete statement of any theorems from our course that you cite.

Problem 1 continued.

- 2. Construct the following. No formal proof needed, but please include enough details of your thought process to let me verify your solution.
 - (a) (2 points) Generators for a subgroup H of the free group F_2 on $\{a, b\}$ such that $H \subseteq N(H)$ is index-2, and $N(H) \subsetneq F_2$.

(b) (2 points) Generators for a subgroup H of the free group F_3 on $\{a, b, c\}$ such that $H \subseteq F_3$ has index 3 and N(H) = H.

3. (a) (1 point) Let $p: \widetilde{X} \to X$ be a covering space map, and let $x_0 \in X$ be a point in its image. State the definition of the action of $\pi_1(X, x_0)$ on the fibre $p^{-1}(x_0)$.

(b) (3 points) Show that two points $\tilde{x_1}, \tilde{x_0} \in p^{-1}(x_0)$ are in the same path-component of \tilde{X} if and only if they are in the same orbit under the action of $\pi_1(X, x_0)$ on $p^{-1}(x_0)$.

4. (3 points) Let $n \ge 1$ and $0 \le k \le n-1$. Let S^n denote the *n*-sphere. Show that there cannot exist a retraction from S^n to any subspace A of S^n homeomorphic to S^k . In particular, the equator $S^{n-1} \subseteq S^n$ is not a retract of S^n .

5. (1 point) State the homology of the chain complex

