Midterm Exam II

Math 592 26 March 2025 Jenny Wilson

Name: _

Instructions: This exam has 5 questions for a total of 16 points.

The exam is **closed-book**. No books, notes, cell phones, calculators, or other devices are permitted. Scratch paper is available.

Fully justify your answers unless otherwise instructed. You may quote any results proved in class, on a quiz, or on the homeworks without proof. Please include a complete statement of the result you are quoting.

You have 90 minutes to complete the exam. If you finish early, consider checking your work for accuracy.

Question	Points	Score
1	4	
2	4	
3	4	
4	3	
5	1	
Total:	16	

Notation

- I = [0, 1] (closed unit interval)
- $D^n = \{x \in \mathbb{R}^n \mid |x| \le 1\}$ (closed unit *n*-disk)
- Sⁿ = ∂Dⁿ⁺¹ = {x ∈ ℝⁿ⁺¹ | |x| = 1} (unit n-sphere) (we may view S¹ as the unit circle in C)
- $S^{\infty} = \bigcup_{n>1} S^n$ with the weak topology
- Σ_g closed genus-g surface
- $\mathbb{R}\mathbf{P}^n$ real projective *n*-space
- $\mathbb{C}\mathbf{P}^n$ complex projective *n*-space

1. (4 points) Let $n \ge 2$. Let S^n denote the *n*-sphere, and let $x_0 \in S^n$ be a fixed basepoint. Let *T* denote the torus, and fix a basepoint $y_0 \in T$. Give an explicit proof that every based map

$$f: (S^n, x_0) \to (T, y_0)$$

is nullhomotopic via a *based* homotopy, i.e., a homotopy stationary on x_0 .

Please include a complete statement of any theorems from our course that you cite.

Proof. We can identify the torus with the orbit space $\mathbb{R}^2/\mathbb{Z}^2$ under the action of \mathbb{Z}^2 by translation. Then the quotient map $p: \mathbb{R}^2 \to T$ is the universal covering map, as in Homework #8 Problem 1. Let $r_0 \in p^{-1}(y_0)$ be any choice of preimage of the basepoint. We will invoke the *lifting criterion* for covering spaces,

Theorem. Suppose $p : (\tilde{Y}, r_0) \to (Y, y_0)$ is a covering space map, and suppose $f : (X, x_0) \to (Y, y_0)$ a based map with X path-connected and locally path-connected. Then a lift $\tilde{f} : (X, x_0) \to (\tilde{Y}, r_0)$ of f exists if and only if $f_*(\pi_1(X, x_0)) \subseteq p_*(\pi_1(\tilde{Y}, r_0)).$

Since S^n is a connected CW complex, it is path-connected and locally path-connected. We proved (since S^n admits a CW complex structure with no 1-cells) that $\pi_1(S^n) \cong 0$. Therefore the hypothesis on fundamental groups is vacuously satisfied. Thus we have a map

$$\widetilde{f}: (S^n, x_0) \to (\mathbb{R}^2, r_0)$$

such that $p \circ \tilde{f} = f$. Let $h_t : \mathbb{R}^2 \to \mathbb{R}^2$ be straight-line homotopy from $id_{\mathbb{R}^2}$ to the constant map at r_0 ,

$$h_t(r) = r_0 + (1-t)(r-r_0)$$

Notably, $h_t(r_0) = r_0$ for all $t \in I$. Then define

$$f_t(x) = p \circ h_t \circ \tilde{f}(x).$$

$$(\mathbb{R}^{2}, r_{0}) \longrightarrow h_{t}$$

$$(S^{n}, x_{0}) \xrightarrow{f} (T, y_{0})$$

Then when t = 0,

$$f_0(x) = p \circ h_0 \circ \widetilde{f}(x) = p \circ id_{\mathbb{R}} \circ \widetilde{f}(x) = f(x)$$
 for all $x \in X$.

When t = 1,

$$f_1(x) = p\left(h_1\left(\widetilde{f}(x)\right)\right) = p(r_0) = y_0 \quad \text{for all } x \in X.$$

When $x = x_0$,

$$f_t(x_0) = p \circ h_t \circ \widetilde{f}(x_0) = p \circ h_t(r_0) = p(r_0) = y_0 \quad \text{for all } t \in I.$$

Thus f_t is a basepoint-preserving nullhomotopy as desired.

Problem 1 continued.

- 2. Construct the following. No formal proof needed, but please include enough details of your thought process to let me verify your solution.
 - (a) (2 points) Generators for a subgroup H of the free group F_2 on $\{a, b\}$ such that $H \subseteq N(H)$ is index-2, and $N(H) \subsetneq F_2$.

Proof. To construct H we construct the corresponding connected cover p of the graph $S^1 \vee S^1$ with single vertex v_0 . The statement that $H \subseteq N(H)$ has index 2 means that the deck group N(H)/H must be order 2, and the statement that $N(H) \neq F_2$ means that the cover is not normal, that is, the deck group is non-transitive on $p^{-1}(v_0)$. This means the degree of p must be greater than 2.

Two examples of possible covers are shown (with a choice of maximal tree highlighted in purple). The single non-trivial deck transformation is given by 180° rotation in both cases.

The first corresponds to the subgroup $\langle a^2 \rangle \subseteq F_2$, and the second to the subgroup $\langle a^2, b^2, (ab)^2, ab^2a, b^{-1}ab^{-1}a^{-1} \rangle \subseteq F_2$, as determined using the given choices of maximal trees.

(b) (2 points) Generators for a subgroup H of the free group F_3 on $\{a, b, c\}$ such that $H \subseteq F_3$ has index 3 and N(H) = H.

Proof. We will construct the corresponding connected cover p of the graph $S^1 \vee S^1 \vee S^1 \vee S^1$ with single vertex v_0 . The statement that H = N(H) means that the cover must have no nontrivial deck transformations, and the condition that $H \subseteq F_3$ has index 3 means that the cover is degree-3, that is, its vertex set $p^{-1}(v_0)$ has three elements.

One possible example is shown, with a choice of maximal tree highlighted in purple. With this choice of maximal tree, we determine that the image of its fundamental group in $\pi_1(S^1 \vee S^1 \vee S^1, v_0) \cong F_3$ is

$$H = \langle a, c^2, cb, bc^{-1}, ca^2 c^{-1}, (ca)b(ca)^{-1}, (ca)c(ca)^{-1} \rangle \subseteq F_3$$

3. (a) (1 point) Let $p: \widetilde{X} \to X$ be a covering space map, and let $x_0 \in X$ be a point in its image. State the definition of the action of $\pi_1(X, x_0)$ on the fibre $p^{-1}(x_0)$.

Definition. Given a class $[\alpha] \in \pi_1(X, x_0)$ represented by a loop α , we define an associated permutation on $p^{-1}(x_0)$ as follows. For a point $\widetilde{x}_0 \in p^{-1}(x_0)$, we consider the (uniquely defined) lift $\overline{\alpha}$ of the inverse loop $\overline{\alpha}$ to a path starting at \widetilde{x}_0 . Then $[\alpha]$ maps \widetilde{x}_0 to the endpoint $\overline{\alpha}(1) \in p^{-1}(x_0)$ of this path.

You proved on Homework #7 Problem 2 that this permutation does not depend on the choice of representative loop α , and that it defines a group action of $\pi_1(X, x_0)$ on the fibre $p^{-1}(x_0)$.

(b) (3 points) Show that two points $\tilde{x}_1, \tilde{x}_0 \in p^{-1}(x_0)$ are in the same path-component of \tilde{X} if and only if they are in the same orbit under the action of $\pi_1(X, x_0)$ on $p^{-1}(x_0)$.

Lemma. Let $\beta : I \to X$ be a path in X from x_0 to x_1 , and let $\tilde{\beta} : I \to \tilde{X}$ be its (unique) lift to \tilde{X} starting at a chosen point $\tilde{x}_0 \in p^{-1}(x_0)$. Let $\tilde{x}_1 = \tilde{\beta}(1)$. Then the inverse path $\overline{\beta}$ is the (unique) lift of the inverse path $\overline{\beta}$ starting at \tilde{x}_1 .

Proof of lemma. We know that, since the interval I is a connected space, the lift of any path $I \to X$ to \widetilde{X} is determined by the image of a single point, in particular it is determined by its starting point, the image of 0.

By definition, $\overline{\beta}(t) = \beta(1-t)$ and $\overline{\widetilde{\beta}}(t) = \widetilde{\beta}(1-t)$, and $p \circ \widetilde{\beta} = \beta$. Then,

$$p \circ \overline{\widetilde{\beta}}(t) = p \circ \widetilde{\beta}(1-t) = \beta(1-t) = \overline{\beta}(t).$$

This confirms that $\overline{\beta}$ is indeed a lift of $\overline{\beta}(t)$, and so it must be the unique lift starting at $\widetilde{x_1}$.

Proof of problem. Suppose that $\tilde{x}_1, \tilde{x}_0 \in p^{-1}(x_0)$ are in the same path component of \tilde{X} . This means, by definition, that there exists a path $\gamma : I \to \tilde{X}$ from \tilde{x}_1 to \tilde{x}_0 . Then $\alpha := p \circ \gamma$ is a loop in X based at x_0 , representing an element $[\alpha]$ in $\pi_1(X, x_0)$. By construction, γ is the (unique) lift of α starting at \tilde{x}_1 . By the lemma, its inverse path $\overline{\gamma}$ is the unique lift of $\overline{\alpha}$ starting at \tilde{x}_0 . Thus $[\alpha]$ maps \tilde{x}_0 to \tilde{x}_1 , and we conclude that these points are in the same orbit.

Conversely, suppose that some $[\alpha] \in \pi_1(X, x_0)$ maps some $\widetilde{x}_0 \in p^{-1}(x_0)$ to $\widetilde{x}_1 \in p^{-1}(x_0)$. This means that $\overline{\alpha}$ lifts to a path from \widetilde{x}_0 to \widetilde{x}_1 , so these points must be in the same path component of \widetilde{X} .

4. (3 points) Let $n \ge 1$ and $0 \le k \le n-1$. Let S^n denote the *n*-sphere. Show that there cannot exist a retraction from S^n to any subspace A of S^n homeomorphic to S^k . In particular, the equator $S^{n-1} \subseteq S^n$ is not a retract of S^n .

Proof. Suppose (for the sake of contradiction) that $r: S^n \to A$ were a retraction. This means, by definition, the composite with the inclusion map $\iota: A \to S^n$ satisfies

$$A \xrightarrow{id} A$$

We proved in class that $\widetilde{H}_i(S^r) \cong \begin{cases} \mathbb{Z}, & i=r\\ 0, & i \neq r. \end{cases}$

Since degree-k reduced homology \widetilde{H}_k is functorial, it follows that we have a commutative diagram

This is contradiction; the identity map on the nonzero group $\widetilde{H}_k(A) \cong \mathbb{Z}$ cannot factor through the trivial group. We conclude that no retraction $r: S^n \to A$ can exist.

5. (1 point) State the homology of the chain complex

Solution. Call the matrices A and B, respectively. By Homework #8 Problem 5(c), the homology is

$$\ker(B)/\operatorname{im}(A) \cong \mathbb{Z}^{6-\operatorname{rank}(A)-\operatorname{rank}(B)} \oplus \bigoplus_{\substack{\text{invariant factors}\\ \alpha \text{ of } A}} \mathbb{Z}/\alpha \mathbb{Z} \cong \mathbb{Z} \oplus \frac{\mathbb{Z}}{3\mathbb{Z}}$$