
Midterm Exam II
Math 592

26 March 2025
Jenny Wilson

Name:

Instructions: This exam has 5 questions for a total of 16 points.

The exam is closed-book. No books, notes, cell phones, calculators, or other devices are
permitted. Scratch paper is available.

Fully justify your answers unless otherwise instructed. You may quote any results proved in
class, on a quiz, or on the homeworks without proof. Please include a complete statement of
the result you are quoting.

You have 90 minutes to complete the exam. If you finish early, consider checking your work
for accuracy.

Question Points Score

1 4

2 4

3 4

4 3

5 1

Total: 16

Notation

• I = [0, 1] (closed unit interval)

• Dn = {x ∈ Rn | |x| ≤ 1} (closed unit n-disk)

• Sn = ∂Dn+1 = {x ∈ Rn+1 | |x| = 1}
(unit n-sphere)
(we may view S1 as the unit circle in C)

• S∞ =
⋃

n≥1 S
n with the weak topology

• Σg closed genus-g surface

• RPn real projective n-space

• CPn complex projective n-space
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1. (4 points) Let n ≥ 2. Let Sn denote the n-sphere, and let x0 ∈ Sn be a fixed basepoint.
Let T denote the torus, and fix a basepoint y0 ∈ T . Give an explicit proof that every
based map

f : (Sn, x0) → (T, y0)

is nullhomotopic via a based homotopy, i.e., a homotopy stationary on x0.

Please include a complete statement of any theorems from our course that you cite.

Proof. We can identify the torus with the orbit space R2/Z2 under the action of Z2

by translation. Then the quotient map p : R2 → T is the universal covering map, as in
Homework #8 Problem 1. Let r0 ∈ p−1(y0) be any choice of preimage of the basepoint.
We will invoke the lifting criterion for covering spaces,

Theorem. Suppose p : (Ỹ , r0) → (Y, y0) is a covering space map, and
suppose f : (X, x0) → (Y, y0) a based map with X path-connected and locally

path-connected. Then a lift f̃ : (X, x0) → (Ỹ , r0) of f exists if and only if

f∗(π1(X, x0)) ⊆ p∗(π1(Ỹ , r0)).

Since Sn is a connected CW complex, it is path-connected and locally path-connected.
We proved (since Sn admits a CW complex structure with no 1-cells) that π1(S

n) ∼= 0.
Therefore the hypothesis on fundamental groups is vacuously satisfied. Thus we have a
map

f̃ : (Sn, x0) → (R2, r0)

such that p◦ f̃ = f . Let ht : R2 → R2 be straight-line homotopy from idR2 to the constant
map at r0,

ht(r) = r0 + (1− t)(r − r0)

Notably, ht(r0) = r0 for all t ∈ I. Then define

ft(x) = p ◦ ht ◦ f̃(x).

(R2, r0)

(Sn, x0) (T, y0)

p

ht

f̃

f

Then when t = 0,

f0(x) = p ◦ h0 ◦ f̃(x) = p ◦ idR ◦ f̃(x) = f(x) for all x ∈ X.

When t = 1,

f1(x) = p
(
h1

(
f̃(x)

))
= p(r0) = y0 for all x ∈ X.

When x = x0,

ft(x0) = p ◦ ht ◦ f̃(x0) = p ◦ ht(r0) = p(r0) = y0 for all t ∈ I.

Thus ft is a basepoint-preserving nullhomotopy as desired.
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Problem 1 continued.
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2. Construct the following. No formal proof needed, but please include enough details of
your thought process to let me verify your solution.

(a) (2 points) Generators for a subgroup H of the free group F2 on {a, b} such that
H ⊆ N(H) is index-2, and N(H) ⊊ F2.

Proof. To construct H we construct the corresponding connected cover p of the
graph S1∨S1 with single vertex v0. The statement thatH ⊆ N(H) has index 2 means
that the deck group N(H)/H must be order 2, and the statement that N(H) ̸= F2

means that the cover is not normal, that is, the deck group is non-transitive on
p−1(v0). This means the degree of p must be greater than 2.

Two examples of possible covers are shown (with a choice of maximal tree highlighted
in purple). The single non-trivial deck transformation is given by 180◦ rotation in
both cases.

The first corresponds to the subgroup ⟨a2⟩ ⊆ F2, and the second to the subgroup
⟨a2, b2, (ab)2, ab2a, b−1ab−1a−1⟩ ⊆ F2, as determined using the given choices of maxi-
mal trees.

(b) (2 points) Generators for a subgroup H of the free group F3 on {a, b, c} such that
H ⊆ F3 has index 3 and N(H) = H.

Proof. We will construct the corresponding connected cover p of the graph S1 ∨
S1 ∨ S1 with single vertex v0. The statement that H = N(H) means that the cover
must have no nontrivial deck transformations, and the condition that H ⊆ F3 has
index 3 means that the cover is degree-3, that is, its vertex set p−1(v0) has three
elements.

c

c

c

One possible example is shown, with a choice of maximal tree highlighted in purple.
With this choice of maximal tree, we determine that the image of its fundamental
group in π1(S

1 ∨ S1 ∨ S1, v0) ∼= F3 is

H = ⟨a, c2, cb, bc−1, ca2c−1, (ca)b(ca)−1, (ca)c(ca)−1⟩ ⊆ F3
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3. (a) (1 point) Let p : X̃ → X be a covering space map, and let x0 ∈ X be a point in its
image. State the definition of the action of π1(X, x0) on the fibre p−1(x0).

Definition. Given a class [α] ∈ π1(X, x0) represented by a loop α, we define an
associated permutation on p−1(x0) as follows. For a point x̃0 ∈ p−1(x0), we consider
the (uniquely defined) lift α̃ of the inverse loop α to a path starting at x̃0. Then [α]
maps x̃0 to the endpoint α̃(1) ∈ p−1(x0) of this path.

You proved on Homework #7 Problem 2 that this permutation does not depend on
the choice of representative loop α, and that it defines a group action of π1(X, x0)
on the fibre p−1(x0).

(b) (3 points) Show that two points x̃1, x̃0 ∈ p−1(x0) are in the same path-component

of X̃ if and only if they are in the same orbit under the action of π1(X, x0) on p−1(x0).

Lemma. Let β : I → X be a path in X from x0 to x1, and let β̃ : I → X̃ be its
(unique) lift to X̃ starting at a chosen point x̃0 ∈ p−1(x0). Let x̃1 = β̃(1). Then the

inverse path β̃ is the (unique) lift of the inverse path β starting at x̃1.

Proof of lemma. We know that, since the interval I is a connected space, the lift
of any path I → X to X̃ is determined by the image of a single point, in particular
it is determined by its starting point, the image of 0.

By definition, β(t) = β(1− t) and β̃(t) = β̃(1− t), and p ◦ β̃ = β. Then,

p ◦ β̃(t) = p ◦ β̃(1− t) = β(1− t) = β(t).

This confirms that β̃ is indeed a lift of β(t), and so it must be the unique lift starting
at x̃1.

Proof of problem. Suppose that x̃1, x̃0 ∈ p−1(x0) are in the same path component

of X̃. This means, by definition, that there exists a path γ : I → X̃ from x̃1 to
x̃0. Then α := p ◦ γ is a loop in X based at x0, representing an element [α] in
π1(X, x0). By construction, γ is the (unique) lift of α starting at x̃1. By the lemma,
its inverse path γ is the unique lift of α starting at x̃0. Thus [α] maps x̃0 to x̃1, and
we conclude that these points are in the same orbit.

Conversely, suppose that some [α] ∈ π1(X, x0) maps some x̃0 ∈ p−1(x0) to x̃1 ∈
p−1(x0). This means that α lifts to a path from x̃0 to x̃1, so these points must be in

the same path component of X̃.
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4. (3 points) Let n ≥ 1 and 0 ≤ k ≤ n− 1. Let Sn denote the n-sphere. Show that there
cannot exist a retraction from Sn to any subspace A of Sn homeomorphic to Sk. In
particular, the equator Sn−1 ⊆ Sn is not a retract of Sn.

Proof. Suppose (for the sake of contradiction) that r : Sn → A were a retraction. This
means, by definition, the composite with the inclusion map ι : A → Sn satisfies

A Sn Aι

id

r

We proved in class that H̃i(S
r) ∼=

{
Z, i = r
0, i ̸= r.

Since degree-k reduced homology H̃k is functorial, it follows that we have a commutative
diagram

H̃k(A) H̃k(S
n) H̃k(A).

Z 0 Z

ι∗

id

r∗

This is contradiction; the identity map on the nonzero group H̃k(A) ∼= Z cannot factor
through the trivial group. We conclude that no retraction r : Sn → A can exist.

5. (1 point) State the homology of the chain complex

Z4 Z6 Z3


1791 4443 10074 15102
990 2450 5530 8250
687 1705 3869 5805
1632 4054 9215 13851
2235 5545 12575 18855
531 1317 2985 4473

 [ 827 −831 2498 −3375 7783 −26858
−712 714 −2148 2900 −6686 23078
846 −846 2544 −3426 7884 −27222

]

The differentials have Smith normal forms


1 0 0 0
0 3 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and

1 0 0 0 0 0
0 2 0 0 0 0
0 0 6 0 0 0

.
Solution. Call the matrices A and B, respectively. By Homework #8 Problem 5(c), the
homology is

ker(B)/im(A) ∼= Z6−rank(A)−rank(B) ⊕
⊕

invariant factors
α of A

Z/αZ ∼= Z⊕ Z
3Z

.
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