Notation

- I = [0, 1] (closed unit interval)
- $D^n = \{x \in \mathbb{R}^n \mid |x| \le 1\}$ (closed unit *n*-disk)
- $S^n = \partial D^{n+1} = \{x \in \mathbb{R}^{n+1} \mid |x| = 1\}$ (*n*-sphere) (we sometimes view S^1 as the unit circle in \mathbb{C})
- $S^{\infty} = \bigcup_{n \ge 1} S^n$ with the weak topology
- Σ_g closed genus-g surface
- $\mathbb{R}P^n$ real projective *n*-space
- $\mathbb{C}\mathbf{P}^n$ real complex *n*-space

Practice problems

- 1. Let X be a topological space, and let $f, g: X \to S^n$ be two maps with the property that the points f(x) and g(x) are never antipodal for any $x \in X$. Prove that f and g are homotopic.
- 2. Suppose that a map $f: S^1 \to S^1$ is nullhomotopic. Show that f has a fixed point, and maps at least one point x to its antipode -x.
- 3. Let X and Y be topological spaces.
 - (a) Suppose that Y is contractible. Prove that any two maps from X to Y are homotopic.
 - (b) Suppose that X is contractible and Y is path-connected. Show that any two maps from X to Y are homotopic.
- 4. (a) Show that a homotopy equivalence $f : X \to Y$ induces a bijection between the set of path-components of X and the set of path-components of Y.
 - (b) Show that f restricts to a homotopy equivalence from each path-component of X to the corresponding path-component of Y .
- 5. A topological space G with a group structure is called a *topological group* if the group multiplication map and inverse map

$$\begin{array}{ll} G \times G \longrightarrow G & \qquad \qquad G \longrightarrow G \\ (g,h) \longmapsto g \cdot h & \qquad \qquad g \longmapsto g^{-1} \end{array}$$

are continuous. Suppose G is a path-connected topological group. Show that, for each $g_0 \in G$, the left multiplication map

$$\ell_{g_0}: G \longrightarrow G$$
$$g \longmapsto g_0 \cdot g$$

is homotopic to the identity.

- 6. Let X be a CW complex. Show that any finite collection of cells in X are contained in a finite subcomplex.
- 7. Give an example (with proof) of a topological space that does not admit a CW complex structure.

8. (QR Exam, January 2024).

- (a) State the definition of a CW complex, and its topology (the weak topology).
- (b) Let X be a CW complex and $A \subseteq X$ a nonempty CW subcomplex. Working directly from your definition, describe a CW complex structure on the quotient space X/A, and verify explicitly that the quotient topology on X/A agrees with the weak topology of your given CW complex structure.
- 9. Let X be a CW complex with n_d cells in dimension d, and let Y be a CW complex with m_d cells in dimension d. We described a natural CW complex structure on $X \times Y$. Count its cells in dimension d.

- 10. Let (X, x_0) and (Y, y_0) be path-connected CW complexes. Let $f : (X, x_0) \to (X', x'_0)$ be a based map, which is a homotopy equivalence via homotopies stationary on x_0 and x'_0 . Show that there is a homotopy equivalence between $X \lor Y$ and $X' \lor Y$. Here the wedge sums are formed by identifying the base points.
- 11. **Definition (Isomorphism).** Let \mathscr{C} be a category. A morphism $f: X \to Y$ in \mathscr{C} is called an *isomorphism* if there is a morphism $g: Y \to X$ such that $f \circ g = id_Y$ and $g \circ f = id_X$. In this case, we write $g = f^{-1}$ and call g the *inverse* of f.
 - (a) Suppose a morphism $f: X \to Y$ in a category \mathscr{C} has an inverse g. Verify that the inverse is unique (so calling g "the" inverse is justified.)
 - (b) Show that an isomorphism is both monic and epic.
 - (c) Show that a map can be monic and epic, but not an isomorphism. *Hint:* Consider a category with only two objects.
 - (d) Let $f: X \to Y$ be a morphism in a category \mathscr{C} . Suppose there were morphisms $g, h: Y \to X$ such that $f \circ g = id_Y$ and $g \circ h = id_X$. Show that g = h, and conclude that f is an isomorphism.
 - (e) Let $f: X \to Y$ be a map of topological spaces. Suppose there exists maps $g, h: Y \to X$ so that $f \circ g$ and $h \circ f$ are both homotopic to identity maps. Prove that f is a homotopy equivalence.
- 12. Show that a map homotopic to a homotopy equivalence is itself a homotopy equivalence.
- 13. Let <u>Set</u> be the category of sets, and for a set A let $\operatorname{Hom}_{\underline{\operatorname{Set}}}(-, A)$ denote the associated contravariant hom functor

$$\begin{split} \operatorname{Hom}_{\underline{\operatorname{Set}}}(-,A) &: \mathscr{C} \longrightarrow \underline{\operatorname{Set}}\\ & B \longmapsto \operatorname{Hom}_{\underline{\operatorname{Set}}}(B,A)\\ & [f:B \to C] \longmapsto \begin{bmatrix} f^* : & \operatorname{Hom}_{\underline{\operatorname{Set}}}(C,A) & \to \operatorname{Hom}_{\underline{\operatorname{Set}}}(B,A)]\\ & \phi & \mapsto \phi \circ f \end{bmatrix} \end{split}$$

Prove that, if f is surjective, then f^* is injective.

- 14. Let $\underline{\text{Top}}_*$ be the category of based topological spaces and based maps. What is the coproduct of based spaces X and Y, along with the two associated maps? Prove your answer.
- 15. Let Top be the category of topological spaces, and let $P : \text{Top} \to \text{Set}$ be the map that takes a topological space X to its set of path components. Explain how to define P on morphisms to make it a functor, and verify that it is well-defined and functorial.
- 16. Recall that we defined a forgetful map

$$\frac{\operatorname{Top}_{*} \longrightarrow \operatorname{Top}}{(X, x_{0}) \longmapsto X}$$
$$f \longmapsto f$$

What is the "free functor" associated to this "forgetful functor"? For a topological space X, determine what universal property the "free based space on X" should satisfy, and describe what this topological space F(X) (along with its basepoint, and distinguished map $X \to F(X)$) should be.

- 17. **Definition (Initial objects, terminal objects, zero objects).** An *initial object I* in a category \mathscr{C} , if it exists, is an object with the property that for any $X \in \mathscr{C}$, there is a unique morphism in \mathscr{C} from I to X. Dually, an object T is a *terminal object* if for every $X \in \mathscr{C}$ there is a unique morphism $X \to T$. If an object is both initial and terminal, it is called a *zero object*.
 - (a) Show that, if an initial (or terminal, or zero) object exists in a category \mathscr{C} , it is unique up to unique isomorphism.

- (b) Determine whether initial, terminal, or zero objects exists, and what they are, in the categories <u>Set</u>, <u>Ab</u>, Grp, Top, and Top .
- (c) Let \mathscr{C} be a category and I an initial object in \mathscr{C} . Prove or disprove: If $F : \mathscr{C} \to \mathscr{D}$ is a covariant functor, then F(I) is an initial object in \mathscr{D} .
- 18. Let F_S denote the free group on the set S. Suppose that S_1 and S_2 are finite sets. Show that, if S_1 and S_2 have different cardinalities, then F_{S_1} and F_{S_2} are not isomorphic. *Hint:* Show that $\operatorname{Hom}_{\operatorname{Grp}}(F_S, \mathbb{Q})$ has the structure of a \mathbb{Q} -vector space, and compute its dimension.
- 19. (a) Let G be a group and [G, G] is commutator subgroup. Let $\phi : G \to G$ be an automorphism. Prove that $\phi([G, G]) \subseteq [G, G]$. (This means that [G, G] is a *characteristic* subgroup.)
 - (b) Show that an automorphism $\phi: G \to G$ induces an automorphism $\tilde{\phi}: G^{ab} \to G^{ab}$.
 - (c) Let Aut(G) denote the group of automorphisms of G. Prove that the induced map

$$\Phi: \operatorname{Aut}(G) \longrightarrow \operatorname{Aut}(G^{ab})$$
$$\phi \longmapsto \tilde{\phi}$$

is a group homomorphism.

20. (a) Let X be a space, and let x_0 and x_1 be two points in the same path component of X. Given a path h from x_0 to x_1 , let β_h be the associated change-of-basepoint map

$$\beta_h: \pi_1(X, x_1) \to \pi_1(X, x_0).$$

Choose a (possibly different) path g from x_1 to x_0 . Show that the automorphism

$$\beta_h \circ \beta_q : \pi_1(X, x_0) \to \pi_1(X, x_0)$$

is given by conjugation by an element of $\pi_1(X, x_0)$ (which one?). Such automorphisms are called *inner automorphisms*.

- (b) Explain the sense in which elements of $\pi_1(X, x_0)$ depend on the choice of basepoint, but conjugacy classes of elements in $\pi_1(X, x_0)$ do not.
- (c) Suppose that $\pi_1(X, x_0)$ is abelian. Show that the isomorphism

$$\beta_h: \pi_1(X, x_1) \to \pi_1(X, x_0)$$

is independent of choice of path h.

- (d) Suppose X is path-connected and $\pi_1(X, x_0)$ is abelian. Explain the sense in which a loop in X gives a well-defined element of $\pi_1(X, x)$ with respect to any basepoint x.
- 21. We showed that $\pi_1(S^1 \times S^1) \cong \mathbb{Z}^2$ is generated by the class of a loop α around a meridian circle and the class of a loop a longitudinal circle, as in Figure 1. Construct an explicit homotopy from $\alpha \cdot \beta$ to $\beta \cdot \alpha$.

Figure 1: The loops α and β in Σ_1

22. (a) Suppose that $p_X : \tilde{X} \to X$ is a cover of a space X, and $p_Y : \tilde{Y} \to Y$ is a cover of a space Y. Show that $p_X \times p_Y : \tilde{X} \times \tilde{Y} \to X \times Y$ is a covering map.

- (b) Conclude that \mathbb{R}^n is a cover of the *n*-torus.
- 23. Suppose that $p_X : \tilde{X} \to X$ is a cover of a space X.
 - (a) Show that, if X is locally Euclidean then so is \tilde{X} .
 - (b) Show that, if X is Hausdorff, then so is X.

With this problem, we are most of the way to showing that, if X is a topological manifold, then so is \tilde{X} . We will need an extra condition on \tilde{X} , however, to ensure it is second-countable.

- 24. Let $f: X \to S^1$ be a continuous map. Show that, if f is nullhomotopic, then it factors through the covering map $p: \mathbb{R} \to S^1$.
- 25. Prove that a space X is simply-connected if and only if there is a unique homotopy class of paths connecting any two points in X.
- 26. Let $X \subseteq D^2$ be a subspace, and let $f: X \to X$ be a map without fixed points. Show that X is not a retract of D^2 .
- 27. Show that there is no retraction from a Möbius band to its boundary.
- 28. Let X be the quotient space defined as the union of the polygons below, modulo the given edge identifications.

- (a) Compute a presentation for $\pi_1(X)$.
- (b) Prove that $\pi_1(X) \cong \mathbb{Z}$.
- (c) Let $B \subseteq X$ be the image of the loop b. Prove that B is not a retract of X. *Hint:* First show that the inclusion $4\mathbb{Z} \hookrightarrow \mathbb{Z}$ does not admit a one-sided inverse.
- 29. Let $S^1 \times I$ be the cylinder, and suppose that $f: S^1 \times I \to X$ is a map that is constant on $S^1 \times \{1\}$. Show that the map f_* induced by f on fundamental group is trivial.
- 30. (a) Let $C_n \subseteq \mathbb{R}^2$ be the circle of radius n and center (n, 0). Let $X = \bigcup_n C_n$. Show that $\pi_1(X)$ is the free group on countably many generators, with n^{th} generator a loop around C_n .
 - (b) Show that X is not homeomorphic to the infinite wedge V_{n∈N} S¹. *Hint:* Show that the point (0,0) in X has a countable neighbouhood basis, but the wedge point of V_{n∈N} S¹ does not.
- 31. Let G and H be groups. Prove that $(G * H)^{ab} = G^{ab} \oplus H^{ab}$.
- 32. (a) Let G be a group with presentation $\langle S \mid R \rangle$. Explain how to construct a 2-dimensional CW complex with fundamental group isomorphic to G.
 - (b) Describe the construction of a CW complex with fundamental group is

$$\operatorname{SL}_2(\mathbb{Z}) \cong \langle a, b \mid abab^{-1}a^{-1}b^{-1}, (aba)^4 \rangle$$

33. Let X be a compact CW complex. Explain why $\pi_1(X)$ must be a finitely presented group.

34. (a) State the Cellular Approximation Theorem.

- (b) Let $d \leq n-1$. Prove that every map from a *d*-dimensionl CW complex X to the *n*-sphere S^n is nullhomotopic.
- 35. **True or counterexample.** For each of the following statements: if the statement is true, write "True". If not, state a counterexample. No justification necessary.

Note: If the statement is false, you can receive partial credit for writing "False" without a counterexample.

- (a) Any contractible space is path-connected.
- (b) Any subspace of a contractible space is contractible.
- (c) Any quotient of a contractible space is contractible.
- (d) The product of two contractible spaces is contractible.
- (e) For any topological space X, any two maps $X \to S^{\infty}$ are homotopic.
- (f) For any topological space X, any two maps $\mathbb{R}^n \to X$ are homotopic.
- (g) Let X be a space and A a subspace. If A is a retract of X, then A and X are homotopy equivalent. (Note the distinction between *retract* and *deformation retract*).
- (h) A CW complex X is compact if and only if it is finite.
- (i) Any compact subset of a CW complex is closed.
- (j) Let F_S be the free group on a set S. Then every group isomorphism $F_S \to F_S$ is induced by a permutation of S.
- (k) There exists no non-abelian group with abelianization \mathbb{Z} .
- (1) Suppose a group G has a presentation with a single generator. Then G is abelian.
- (m) If G is a finitely presented group, then its abelianization G^{ab} is finitely presented.
- (n) Every topological space is homeomorphic to the topological disjoint union of its connected components.
- (o) There does not exist a retraction from \mathbb{R}^2 to $\mathbb{R}^2 \setminus \{0\}$.
- (p) There does not exist a retraction from the torus $S^1 \times S^1$ to its meridian $S^1 \times \{(1,0)\}$.
- (q) Let $X \subseteq Y$ be a subspace, and $x_0 \in X$. Then $\pi_1(X, x_0)$ is a subgroup of $\pi_1(Y, x_0)$.
- (r) Suppose that X is a union of open, contractible subsets. Then $\pi_1(X) = 0$.
- (s) Any presentation of a finite group must be finite.
- (t) If G is a finitely presented group, then there exists a compact Hausdorff space with fundamental group isomorphic to G.
- (u) If X is a connected graph, then $\pi_1(X)$ is a free group.
- 36. Compute the fundamental groups of the following spaces, and give presentations. Draw or describe the generators as loops in the space. Recall some tools we have developed:
 - fundamental group is a homotopy invariant
 - fundamental groups of Cartesian products and wedge sums
 - the quotient of a CW complex by a contractible subcomplex is a homotopy equivalence
 - Van Kampen theorem
 - our results from Homework #4 on the effect on π_1 of gluing in disks along their boundaries
 - $\bullet\,$ our results from Homework #4 on the fundamental groups of CW complexes
 - (a) The product of $\mathbb{R}P^2$ and $\mathbb{C}P^2$
 - (b) The wedge sum of a cylinder and a Möbius band
 - (c) A genus-2 surface with two disks glued in, as in Figure 3

Figure 2: The wedge sum of a cylinder and a Möbius band

Figure 4: Three connected graphs

- (d) A Klein bottle
- (e) Two Möbius bands glued by the identity map along their boundaries.
- (f) Each of graphs in Figure 4.
- (g) The CW complex shown in Figure 5.

Figure 5: A 2-dimensional CW complex

- (h) The plane \mathbb{R}^2 with *n* punctures
- (i) The 2-sphere S^2 with n punctures
- (j) \mathbb{R}^3 after deleting *n* lines through the origin
- (k) The torus with n punctures
- (l) $\mathbb{R}P^2$ with a puncture
- (m) The quotient of the torus obtained by choosing an embedded disk D^2 , and identifying its boundary S^1 to a single point
- 37. (QR Exam, January 2016). Let K be the complete graph on 4 letters, ie, K has 4 vertices, and there is a unique edge connecting each pair of distinct vertices.

- (a) Calculate $\pi_1(K)$.
- (b) Show that Σ_2 is not a deformation retract of any space homotopy equivalent to K.

38. Let X be the quotient space defined by the following polygon with edge identifications. Compute $\pi_1(X)$.

