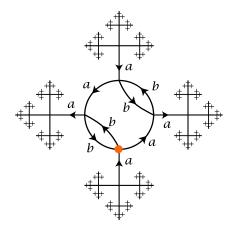
Name:

Score (Out of 7 points):

1. (7 points) Consider the wedge $X = S^1 \vee S^1$ of circles with wedge point x_0 . We use the letters a and b to label the two circles, and (by mild abuse of notation) to represent the corresponding generators of $\pi_1(X, x_0)$, which we may identify with the free group $F_{\{a,b\}}$ on a and b.

Below is a (based) cover $p: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$. The covering map p is specified by the edge labels and orientations. A distinguished basepoint \widetilde{x}_0 is marked with an orange dot.



Let $H := p_*\left(\pi_1\left(\widetilde{X}, \widetilde{x}_0\right)\right).$

Fill in the following. No justification necessary, however (if applicable) please indicate your choice of maximal tree, to help me verify your solution.

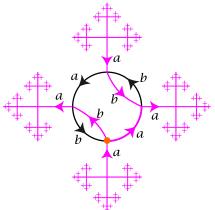
- (a) The degree of this cover is ...
 (countably) infinite
 (b) Circle one: this cover is ...
 REGULAR
- (c) The deck group is (as an abstract group) ... $\mathbb{Z}/2\mathbb{Z}$
- (d) State a free generating set for H.

One possible solution, using the maximal tree on the following page: b^2 , $ab^{-1}ab^{-1}$, ab^2a^{-1}

- (e) Circle precisely the elements of $F_{\{a,b\}}$ below that are contained in H.
 - a a^2 b^2 ab ba ab^2 b^2ab abab
- (f) Circle precisely the elements of $F_{\{a,b\}}$ below that are in the normalizer N(H) of H.
 - a a^2 b^2 ab ba ab^2 b^2ab abab

Solutions, explained:

- (a) Since the base space is connected, the degree is well-defined. It is the (common) cardinality of the p-preimage of any point in X. When X is the wedge $S^1 \vee S^1$, viewed as a graph with one vertex x_0 , then $p^{-1}(x_0)$ is the set of vertices of the covering space, and the degree of p is the number of vertices of \tilde{X} .
- (b) A covering space is regular iff the group of deck transformations acts transitively on the preimage of any point in the base. In the case that X is a wedge of circles—and we encode a covering space \tilde{X} as directed labelled graph by the conventions used in this problem—a deck map is precisely a graph automorphism of \tilde{X} that respects the labels and orientations on the edges. By visual inspection, the graph on this quiz is not symmetric enough to have a transitive action on its vertices, so it is not regular.
- (c) By visual inspection, the only nontrivial automorphism (of the labelled, oriented graph) is 180° rotation. Hence the deck group is the group of order 2.
- (d) Steps to find a free generating set for H:
 - Choose a maximal tree T in the cover, that is, a tree containing every vertex. One such tree is shown highlighted in pink.



- Since T is a contractible CW subcomplex, the quotient $\widetilde{X} \to \widetilde{X}/T$ is a homotopy equivalence. Its image \widetilde{X}/T is a wedge of circles, one circle for each edge not in T.
- Choose a lift of each circle. This means, for each edge e not in T: Determine a path through \widetilde{X} that starts at x_0 , travels in T to a vertex of e, traverses e once, and travels in T back to x_0 . (The path is unique once we specify whether it will traverse e parallel or antiparallel its orientation).
- Because the homotopy equivalence $\widetilde{X} \to \widetilde{X}/T$ induces an isomorphism of fundamental groups, these loops are a free generating set for $\pi_1(\widetilde{X}, \widetilde{x}_0)$.
- Because $p_* : \pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(X, x_0)$ is injective, the images of these generators are a free generating set for $H = im(p_*)$. We record the image of each loop as a word in $F_{\{a,b\}} \cong \pi_1(X, x_0)$ by reading the labels off the edges as we traverse the loop. Specifically, if an edge is labelled by an a, we record the letter a if we traverse the edge parallel its orientation, and record the letter a^{-1} if antiparallel.

With this choice of maximal tree, and the decision to traverse the three complementary black edges in the parallel direction, we obtain the free generating set b^2 , $ab^{-1}ab^{-1}$, ab^2a^{-1} for H.

- (e) Each element in $\pi_1(X, x_0)$ (interpreted as a word in $F_{\{a,b\}}$) has a unique lift to a path in \widetilde{X} starting at \widetilde{x}_0 : the word prescribes the sequence of edges. Then the loop γ is in H if and only if its lift $\widetilde{\gamma}$ starting at \widetilde{x}_0 is a loop. (See Hatcher, Propostion 1.31.)
- (f) The loop γ is in N(H) if and only if its lift $\tilde{\gamma}$ to \tilde{X} starting at \tilde{x}_0 has endpoint $\tilde{\gamma}(1)$ in the orbit of \tilde{x}_0 under the deck group action. (See Hatcher, Proposition 1.37 and proof of Proposition 1.39.)