Representation Stability and FI–Modules Exposition on work by Church – Ellenberg – Farb Jenny Wilson University of Chicago	This talk was given at the 2012 Topology Student Workshop, held at the Georgia Institute of Technology from June 11–15, 2012. It is primarily an expositional talk on recent work done by my advisor, Benson Farb, with Tom Church and Jordan Ellenberg. Most of the talk will be devoted to defining the terms in the title.
Topology Student Workshop 2012	
Jenny Wilson (University of Chicago) Representation Stability TSW 2012 1 / 1	7
Background: Classical Homological Stability $\{Y_n\}_n$ is a sequence of groups or topological spaces, with inclusions $\phi_n : Y_n \to Y_{n+1}$	The context for the project "Representation Stability and FI–Modules" is the study of homological stability. Suppose we have a sequence of groups or spaces, with inclusions. Fix a nonnegative integer k . Eventually, for n large enough relative to k , we want the induced maps on k^{th} homology to be isomorphisms. If this property holds for every k , we say that the sequence is homologically stable.
Definition (Homological Stability) The sequence $\{Y_n\}$ is <i>homologically stable</i> (over a ring <i>R</i>) if for each $k \ge 1$, the map $(\phi_n)_* : H_k(Y_n; R) \to H_k(Y_{n+1}; R)$ is an isomorphism for $n >> k$.	There are similar definitions for cohomology groups, homotopy groups,
Jenny Wilson (University of Chicago) Representation Stability TSW 2012 2 / 1	7
Examples of Homologically Stable Sequences	Here is a sampling of major results from the past 50 years.
 (Nakaoka 1961) Symmetric groups S_n (Arnold 1968, Cohen 1972) 	This list, and the references, are by no means comprehensive – but they should give an idea of how important, and pervasive, this phenomenon is in topology and geometry.

- (Arnold 1968, Cohen 1972) Braid groups *B_n*
- (McDuff 1975, Segal 1979)
 Configuration spaces of open manifolds
- (Charney 1979, Maazen 1979, van der Kallen 1980)
 Linear groups, arithmetic groups (such as SL_n(Z))
- (Harer 1985)
 Mapping class groups of surfaces with boundary
- (Hatcher 1995)
 Automorphisms of free groups Aut(*F_n*)
- (Hatcher–Vogtmann 2004)
 Outer automorphisms of free groups Out(*F_n*)
 Jenny Wilson (University of Chicago)
 Representation Stability

TSW 2012 3 / 17

Generalizing Homological Stability What can we say when $H_k(Y_n; R)$ does not stabilize? More generally, let $\{V_n\}_n$ be a sequence of <i>R</i> -modules. Suppose V_n has an action by a group G_n .	Two years ago, Church and Farb released a preprint about what they called "representation stability". Two months ago, Church, Ellenberg, and Farb released a second preprint extending this work, using the concept of an "Fl-module". A major goal of these papers is to develop a framework to study sequences that <i>do not</i> stabilize in the sense of homological stability. Consider the following setup: Suppose we have a sequence of <i>R</i> -modules { V_n } _n (for example, $V_n = H_k(Y_n; R)$), and suppose V_n has an action of some group G_n . We want to use the extra structure encoded in these group actions to study the long-term behaviour of the sequence. The objective is to develop a concept of stability in terms of the G_n -symmetries. For this talk, for simplicity, we will restrict our attention to the case when the groups G_n are the symmetric groups S_n , and $\{V_n\}_n$ is a sequence of finite-dimensional rational vector spaces.	
Our objective: A notion of stability for $\{V_n\}_n$ that takes into account the G_n -symmetries. In this talk: • $G_n = S_n$, the symmetric group • $R = \mathbb{Q}$, and V_n are finite dimesional vector spaces		
Jenny Wilson (University of Chicago) Representation Stability TSW 2012 4 / 17		
An Example: The Permutation Representation	We will begin with a toy example of a sequence that exhibits the sort	

Example (The Permutation Representation) Consider the permutation representation

$$V_n = \mathbb{Q}^n = \langle e_1, \ldots, e_n \rangle.$$

For each n, V_n decomposes into two irreducibles:

$$\mathbb{Q}^{n} = \left\{ a(e_{1} + e_{2} + \ldots + e_{n}) \right\} \oplus \left\{ a_{1}e_{1} + \ldots + a_{n}e_{n} \mid \sum a_{i} = 0 \right\}$$

$$\xrightarrow{e_{1}} \xrightarrow{e_{2}} e_{1} + e_{2}$$

$$\xrightarrow{e_{1}} e_{1} - e_{2}$$

of stability we want.

Conside the permutation representations, the usual action of the symmetric group S_n on \mathbb{Q}^n by permutation matrices.

Each representation decomposes into two invariant subspaces. The 1–dimensional diagonal subspace (shown in red) is fixed by the action. For each $n \ge 2$, the diagonal has an (n - 1)–dimensional invariant complement, the subspace of coefficient-sum-zero (shown in green). This complement is also irreducible – it is isomorphic to the "standard representation".

An Example: The Permutation Representation

Some properties of the permutation representation

• The decomposition into irreducibles 'looks the same' for every *n*.

$$\mathbb{Q}^n = \Big\{a(e_1 + e_2 + \ldots + e_n)\Big\} \oplus \Big\{a_1e_1 + \ldots + a_ne_n \Big| \sum a_i = 0\Big\}$$

• The dimension of V_n grows polynomially in n

Jenny Wilson (University of Chicago) Representation Stability

$$\dim(V_n) = n$$

• The characters χ_n of V_n have a 'nice' global description

$$\chi_n(\sigma) = \#1$$
-cycles of σ for all $\sigma \in S_n$, for all n .

Let's highlight some properties of these permutation representations.

Notice that the sequence is *not* stable in the sense that the spaces are eventually isomorphic – in fact, the dimensions grow without bound. However, there are several things we can say about the sequence.

Firstly, heuristically, the description of the irreducible subrepresentations is similar for each n. In a moment, I'll give a precise definition of what it means for decompositions into irreducibles to 'look the same' as n grows.

Secondly, the dimension of V_n is polynomial in n.

Thirdly, the characters of these representations can be described uniformly in *n*. Given a permutation matrix, its trace is simply the number of fixed points of the permutation. In other words, for any permutation for any value of *n*, the character of that permutation is equal to the number of 1-cycles in its cycle type. Again, I will soon give a precise statement of what I mean by a 'uniform description' for a sequence of S_n characters.

Definition (Church-Ellenberg-Farb)	(FI-Modules)

A (rational) FI-module is a functor

 $V : \mathsf{FI} \to \mathbb{Q}$ -Vect

Finite Generation of FI–Modules

Definition (Generation)

If *V* is an FI–module, and $S \subseteq \coprod_n V_n$, then the *FI–module generated* by *S* is the smallest sub–FI–module containing the elements of *S*.

Definition (Finite Generation)

An FI-module is *finitely generated* if it has a finite generating set.

Example (The Permutation Representation $V_n = \mathbb{Q}^n$) The permutation representation $V_n = \mathbb{Q}^n = \langle e_1, \dots, e_n \rangle$ is generated

by $e_1 \in V_1$.

Jenny Wilson (University of Chicago) Representation Stability

TSW 2012 11 / 17

We define a rational FI–module to be a functor from the category FI to the category of rational vector spaces.

What is the data of an FI–module? For each n, we have a vector space V_n , with an action of the symmetric group S_n . Additionally, we have a host of linear maps between these vector spaces, which are compatible with these S_n –actions.

As a first example, it's an exercise to verify that we can give the sequence of permutation representations the structure of an FI-module, by appropriately defining linear maps between the vector spaces.

We can define 'generation' of FI-modules in the usual way.

Given an FI–module *V*, and a set *S* of vectors from the various vector spaces V_n , take all linear combinations of all images of these vectors under the induced linear maps – these spaces themselves comprise an FI–module, which we say is the FI–module *generated* by *S*.

Equivalently, the FI–module generated by S is the smallest sub–FI–module that contains all the vectors in S.

Having defined generation, we have a notion of what it means for an FI-module to be finitely generated.

It is an exercise to verify that our sequence of permutation representations, as an FI–module, is generated by the single basis element e_1 in V_1 .

Consequences of Finite Generation

Theorem (Church–Ellenberg–Farb)

Let V be a finitely-generated FI–module. Then for n >> 1

- The decomposition into irreducible S_n-representations stabilizes.
- dim(V_n) is polynomial in n
- The characters χ_n of V_n are given by a (unique) polynomial in the variables X_r

 $X_r(\sigma) = \#r$ -cycles of σ for all $\sigma \in S_n$, for all n.

Any sub-FI-module of V also has these properties.

We call the sequence $\{V_n\}_n$ uniformly representation stable.

Now, the main theorem.

If we have a finitely generated FI–module V, then the underlying sequence of S_n –representations satisfies the following properties, for large *n*:

Firstly, the decomposition into irreducible representations stabilizes – in the sense that we can recover V_{n+1} from V_n by 'adding a box to the top row' to the Young diagram for each irreducible.

Secondly, the dimension of V_n is polynomial in n.

Thirdly, the characters have a 'global' description: they are polynomials in variables X_r , where X_r is a function that takes a permutation and reads off the number of *r*-cycles in its cycle type.

The theorem actually says more: in a given example, we can put enough constraints on these character polynomials that the problem of determining the characters is reduced to a finite computation. It is enough to compute the value of the characters for certain small n.

Finally, these FI–modules have the 'Noetherian property' that every sub–FI–module of an finitely generated FI–module is itself finitely generated, and so also satisfies all of these properties.

Some Representation Stable Cohomology Sequences Here are some results that have been proven since Church-Farb's "representation stability" paper appeared 2 years ago. The FI-module 'machinery' developed by Church-Ellenberg-Farb (Church-Farb) $\{H^k(P_n; \mathbb{Q})\}_n$ The pure braid group earlier this year has hugely simplified many of these proofs. These results were originally proved through a detailed analysis of the The pure MCG (Jimenez-Rolland) $\{H^k(\mathsf{PMod}(\Sigma^n_{q,r});\mathbb{Q})\}_n$ combinatorics of the decomposition into S_n -irreducibles – a much of an *n*-puncture surface $\sum_{a,r}^{n}$ more difficult task than verifying an FI-module structure and proving finite generation. Ordered configuration space (Church) $\{H^k(\mathsf{PConf}_n(M); \mathbb{Q})\}_n$ of a manifold MThe 'Noetherian property' has also proven a powerful tool. In particular, to study cohomology of the mapping class group of a The pure MCG (Putman) $\{H^k(\mathsf{PMod}^n(M); \mathbb{F})\}_n$ punctured manifold, or of the configuration space of a manifold, we of an *n*-puncture manifold realize these cohomology groups as the limit of a spectral sequence. The 'Noetherian property' implies that is suffices to prove finite (Putman) Eg, $\{H^k(SL_n(\mathbb{Z}, \ell); \mathbb{F})\}_n$ Certain congruence subgroups generation for the E_2 page, which enormously simplifies these proofs. The pure symmetric In summary: Simple (and often easily-verified) symmetries of these (Wilson) $\{H^k(P\Sigma_n;\mathbb{Q})\}_n$ automorphism group $P\Sigma_n$ sequences of S_n -representations imposes very strong constraints on of the free group their structure and growth. The failure of these sequences to be (co)homologically stable in the classical sense can be seen as a consequence of these symmetries. TSW 2012 13 / 17 Jenny Wilson (University of Chicago) Representation Stability **Open Question** In each of these examples, it has been proven that for each k, the cohomology groups are uniformly representation stable - but we know very little about what the stable characters, and decompositions into irreducibles, actually are. These questions are particularly compelling, since the constraints on the degree of the character polynomials make these computations much more tractable. Problem Compute the characters, and the stable decompositions into irreducibles, in the above examples. Jenny Wilson (University of Chicago) Representation Stability TSW 2012 14/17 My Research FI-modules are a tool for studying sequences of representations of the symmetric groups. I am currently working on a project to extend the theory to sequences of representations of the other classical families of Weyl groups - the hyperoctahedral groups in types B/C, and the even-signed permutation groups in type D. My current project To develop a unified "FI-module theory" for the three families of classical Weyl groups.

Jenny Wilson (University of Chicago)

Representation Stability

TSW 2012 15 / 17

References	In this talk, I described representation stability and FI-modules as tools to generalize the theory of homological stability to sequences with group actions. This is, in fact, only one corner of the theory that has been developed by Church–Ellenberg–Farb and others. The theory also has applications to classical representation theory, combinatorics, algebraic geometry, and number theory, among other fields. There are a wealth of open problems and possible new directions. Full details and additional applications are given in these preprints by Church–Farb and Church–Ellenberg–Farb. Both papers are available on the ArXiv.	
 Further Reading T Church, B Farb. <i>Representation theory and homological stability</i>, preprint, 2010. T Church, J Ellenberg, B Farb. <i>FI-modules: A new approach to stability for S_n-representations</i>, preprint, 2012. 		
Jenny Wilson (University of Chicago) Representation Stability TSW 2012 16 / 17		
The End	 In summary The theory of representation stability and FI-modules gives a language for understanding the patterns of growth of sequences of group representations. It allows us to deduce strong constraints on the structure of such a sequence using only elementary symmetries. 	
Acknowledgements Many thanks to Benson Farb, Tom Church, Jordan Ellenberg, and Rita Jimenez-Rolland for their help and guidance.	Comments, questions, and suggestions are welcome. Contact me at wilsonj@math.uchicago.edu.	
Jenny Wilson (University of Chicago) Representation Stability TSW 2012 17 / 17		