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This talk was given at the 2012 Topology Student Workshop, held at
the Georgia Institute of Technology from June 11–15, 2012.

It is primarily an expositional talk on recent work done by my advisor,
Benson Farb, with Tom Church and Jordan Ellenberg.

Most of the talk will be devoted to defining the terms in the title.

Background: Classical Homological Stability

{Yn}n is a sequence of groups or topological spaces,

with inclusions
φn : Yn → Yn+1

Definition (Homological Stability)
The sequence {Yn} is homologically stable (over a ring R)
if for each k ≥ 1, the map

(φn)∗ : Hk (Yn; R)→ Hk (Yn+1; R)

is an isomorphism for n >> k .
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The context for the project “Representation Stability and FI–Modules”
is the study of homological stability.

Suppose we have a sequence of groups or spaces, with inclusions.
Fix a nonnegative integer k . Eventually, for n large enough relative to
k , we want the induced maps on k th homology to be isomorphisms. If
this property holds for every k , we say that the sequence is
homologically stable.

There are similar definitions for cohomology groups, homotopy
groups, . . .

Examples of Homologically Stable Sequences

• (Nakaoka 1961)
Symmetric groups Sn

• (Arnold 1968, Cohen 1972)
Braid groups Bn

• (McDuff 1975, Segal 1979)
Configuration spaces of open manifolds

• (Charney 1979, Maazen 1979, van der Kallen 1980)
Linear groups, arithmetic groups (such as SLn(Z))

• (Harer 1985)
Mapping class groups of surfaces with boundary

• (Hatcher 1995)
Automorphisms of free groups Aut(Fn)

• (Hatcher–Vogtmann 2004)
Outer automorphisms of free groups Out(Fn)
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Here is a sampling of major results from the past 50 years.

This list, and the references, are by no means comprehensive – but
they should give an idea of how important, and pervasive, this
phenomenon is in topology and geometry.



Generalizing Homological Stability

What can we say when Hk (Yn; R) does not stabilize?

More generally, let {Vn}n be a sequence of R-modules.
Suppose Vn has an action by a group Gn.

Our objective: A notion of stability for {Vn}n that takes into account the
Gn–symmetries.

In this talk:
• Gn = Sn, the symmetric group
• R = Q, and Vn are finite dimesional vector spaces
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Two years ago, Church and Farb released a preprint about what they
called “representation stability”. Two months ago, Church, Ellenberg,
and Farb released a second preprint extending this work, using the
concept of an ”FI–module“.

A major goal of these papers is to develop a framework to study
sequences that do not stabilize in the sense of homological stability.

Consider the following setup: Suppose we have a sequence of
R-modules {Vn}n (for example, Vn = Hk (Yn; R)), and suppose Vn has
an action of some group Gn.

We want to use the extra structure encoded in these group actions to
study the long-term behaviour of the sequence. The objective is to
develop a concept of stability in terms of the Gn–symmetries.

For this talk, for simplicty, we will restrict our attention to the case
when the groups Gn are the symmetric groups Sn, and {Vn}n is a
sequence of finite-dimensional rational vector spaces.

An Example: The Permutation Representation

Example (The Permutation Representation)
Consider the permutation representation

Vn = Qn = 〈e1, . . . ,en〉.

For each n, Vn decomposes into two irreducibles:

Qn =
{

a(e1 + e2 + . . .+ en)
}
⊕
{

a1e1 + . . .+ anen

∣∣∣
∑

ai = 0
}
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We will begin with a toy example of a sequence that exhibits the sort
of stability we want.

Conside the permutation representations, the usual action of the
symmetric group Sn on Qn by permutation matrices.

Each representation decomposes into two invariant subspaces. The
1–dimensional diagonal subspace (shown in red) is fixed by the
action. For each n ≥ 2, the diagonal has an (n − 1)–dimensional
invariant complement, the subspace of coefficient-sum-zero (shown
in green). This complement is also irreducible – it is isomorphic to the
”standard representation“.

An Example: The Permutation Representation

Some properties of the permutation representation

• The decomposition into irreducibles ‘looks the same’ for every n.

Qn =
{

a(e1 + e2 + . . .+ en)
}
⊕
{

a1e1 + . . .+ anen

∣∣∣
∑

ai = 0
}

• The dimension of Vn grows polynomially in n

dim(Vn) = n

• The characters χn of Vn have a ‘nice’ global description

χn(σ) = #1–cycles of σ for all σ ∈ Sn, for all n.
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Let’s highlight some properties of these permutation representations.

Notice that the sequence is not stable in the sense that the spaces
are eventually isomorphic – in fact, the dimensions grow without
bound. However, there are several things we can say about the
sequence.

Firstly, heuristically, the description of the irreducible
subrepresentations is similar for each n. In a moment, I’ll give a
precise definition of what it means for decompositions into
irreducibles to ’look the same’ as n grows.

Secondly, the dimension of Vn is polynomial in n.

Thirdly, the characters of these representations can be described
uniformly in n. Given a permutation matrix, its trace is simply the
number of fixed points of the permutation. In other words, for any
permutation for any value of n, the character of that permutation is
equal to the number of 1-cycles in its cycle type. Again, I will soon
give a precise statement of what I mean by a ’uniform description’ for
a sequence of Sn characters.



Some Representation Theory

Some facts about Sn–representations over Q

• Every Sn–representation decomposes uniquely as a sum of
irreducibles.

• Irreducibles are indexed by
partitions λ of n,
depicted by Young diagrams.
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In order to state what it means for the decomposition into irreducible
representations to ’look the same’ for different values of n, let’s recall
some representation theory of the symmetric group.

Recall that a representation of Sn is irreducible if it has no nontrivial
Sn–stable subspaces. Rational representations decompose
completely and uniquely into a sum of irreducibles.

There is a canonical way of constructing the irreducible
representations of Sn, indexed by partitions of n. A partition of n is a
list of positive integers that sum to n – we denote these by Young
diagrams, with each integer encoded by the length of a row. An
example is given for when n = 15.

Obstacle
How can we compare irreducibles for different values of n?

Solution
Two irreducibles are “the same” if only the top rows of their Young
diagrams differ.

Example (The Permutation Representation Vn = Qn)

For example, V
( )

n
refers to the irreducible representations

V
( )

5
= V S5–rep

V
( )

6
= V S6–rep

V
( )

7
= V S7–rep

V
( )

8
= V S8–rep

V
( )

9
= V S9–rep

V
( )

10
= V S10–rep

Q1 = V

Q2 = V ⊕ V

Q3 = V ⊕ V

Q4 = V ⊕ V

Q5 = V ⊕ V

Qn = V (∅)n ⊕ V ( )n for all n ≥ 2.
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Given this classification of irreducibles Sn–representations, we’re
immediately faced with an obstacle: the irreducibles are indexed by
partitions of n, which, of course, depend on n. It’s not clear how to
define identifications between irreducibles for different values of n.

The solution: we declare that two irreducibles (for different values of
n) are “the same” if only the top row of their Young diagrams differ.

To illustrate what this means, observe the decomposition of the
permutation representations into irreducibles. Once n ≥ 2, we get the
decomposition at stage (n + 1) by ’adding a box’ to the top row of
each of Young diagram at stage n.

This procedure of ’adding a box to the top row’ of each irreducible is
exactly the pattern that defines representation stability for a sequence
of representations of the symmetric groups.

The Definition of an FI–module

Definition (Church–Ellenberg–Farb) (The Category FI)
Denote by FI the category of Finite sets with Injective maps
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We are now ready for our main definition, of an FI–module.

To begin, we define the category FI – here, FI stands for “finite sets”
and “injective maps”.

We can realize this category as follows: The objects are indexed by
the natural numbers – the number n corresponds to the set of
numbers {1,2, . . . ,n}. The morphisms are all injective maps between
these sets.

Notice, in particular, that the endomorphisms of the object n are the
symmetric group Sn.



The Definition of an FI–module

Definition (Church–Ellenberg–Farb) (FI–Modules)
A (rational) FI–module is a functor

V : FI→ Q-Vect
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We define a rational FI–module to be a functor from the category FI
to the category of rational vector spaces.

What is the data of an FI–module? For each n, we have a vector
space Vn, with an action of the symmetric group Sn. Additionally, we
have a host of linear maps between these vector spaces, which are
compatible with these Sn–actions.

As a first example, it’s an exercise to verify that we can give the
sequence of permutation representations the structure of an
FI–module, by appropriately defining linear maps between the vector
spaces.

Finite Generation of FI–Modules

Definition (Generation)
If V is an FI–module, and S ⊆∐n Vn, then the FI–module generated
by S is the smallest sub–FI–module containing the elements of S.

Definition (Finite Generation)
An FI–module is finitely generated if it has a finite generating set.

Example (The Permutation Representation Vn = Qn)
The permutation representation Vn = Qn = 〈e1, . . . ,en〉 is generated
by e1 ∈ V1.
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We can define ’generation’ of FI–modules in the usual way.

Given an FI–module V , and a set S of vectors from the various vector
spaces Vn, take all linear combinations of all images of these vectors
under the induced linear maps – these spaces themselves comprise
an FI–module, which we say is the FI–module generated by S.

Equivalently, the FI–module generated by S is the smallest
sub–FI–module that contains all the vectors in S.

Having defined generation, we have a notion of what it means for an
FI–module to be finitely generated.

It is an exercise to verify that our sequence of permutation
representations, as an FI–module, is generated by the single basis
element e1 in V1.

Consequences of Finite Generation

Theorem (Church–Ellenberg–Farb)
Let V be a finitely-generated FI–module. Then for n >> 1

• The decomposition into irreducible Sn–representations stabilizes.

• dim(Vn) is polynomial in n

• The characters χn of Vn are given by a (unique) polynomial in the
variables Xr

Xr (σ) = #r–cycles of σ for all σ ∈ Sn, for all n.

Any sub–FI–module of V also has these properties.

We call the sequence {Vn}n uniformly representation stable.
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Now, the main theorem.

If we have a finitely generated FI–module V, then the underlying
sequence of Sn–representations satisfies the following properties, for
large n:

Firstly, the decomposition into irreducible representations stabilizes –
in the sense that we can recover Vn+1 from Vn by ’adding a box to the
top row’ to the Young diagram for each irreducible.

Secondly, the dimension of Vn is polynomial in n.

Thirdly, the characters have a ’global’ description: they are
polynomials in variables Xr , where Xr is a function that takes a
permutation and reads off the number of r–cycles in its cycle type.

The theorem actually says more: in a given example, we can put
enough constraints on these character polynomials that the problem
of determining the characters is reduced to a finite computation. It is
enough to compute the value of the characters for certain small n.

Finally, these FI–modules have the ’Noetherian property’ that every
sub–FI–module of an finitely generated FI–module is itself finitely
generated, and so also satisfies all of these properties.



Some Representation Stable Cohomology Sequences

(Church–Farb) {Hk (Pn;Q)}n The pure braid group

(Jimenez-Rolland) {Hk (PMod(Σn
g,r );Q)}n

The pure MCG
of an n-puncture surface Σn

g,r

(Church) {Hk (PConfn(M);Q)}n
Ordered configuration space
of a manifold M

(Putman) {Hk (PModn(M);F)}n
The pure MCG
of an n-puncture manifold

(Putman) Eg, {Hk (SLn(Z, `);F)}n Certain congruence subgroups

(Wilson) {Hk (PΣn;Q)}n

The pure symmetric
automorphism group PΣn
of the free group
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Here are some results that have been proven since Church–Farb’s
“representation stability“ paper appeared 2 years ago.

The FI–module ‘machinery’ developed by Church–Ellenberg–Farb
earlier this year has hugely simplified many of these proofs. These
results were originally proved through a detailed analysis of the
combinatorics of the decomposition into Sn–irreducibles – a much
more difficult task than verifying an FI–module structure and proving
finite generation.

The ‘Noetherian property’ has also proven a powerful tool. In
particular, to study cohomology of the mapping class group of a
punctured manifold, or of the configuration space of a manifold, we
realize these cohomology groups as the limit of a spectral sequence.
The ‘Noetherian property’ implies that is suffices to prove finite
generation for the E2 page, which enormously simplifies these proofs.

In summary: Simple (and often easily-verified) symmetries of these
sequences of Sn–represntations imposes very strong constraints on
their structure and growth. The failure of these sequences to be
(co)homologically stable in the classical sense can be seen as a
consequence of these symmetries.

Open Question

Problem
Compute the characters, and the stable decompositions into
irreducibles, in the above examples.
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In each of these examples, it has been proven that for each k , the
cohomology groups are uniformly representation stable – but we
know very little about what the stable characters, and decompositions
into irreducibles, actually are.

These questions are particularly compelling, since the constraints on
the degree of the character polynomials make these computations
much more tractable.

My Research

My current project
To develop a unified “FI–module theory” for the three families of
classical Weyl groups.
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FI–modules are a tool for studying sequences of representations of
the symmetric groups. I am currently working on a project to extend
the theory to sequences of representations of the other classical
families of Weyl groups – the hyperoctahedral groups in types B/C,
and the even-signed permutation groups in type D.
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In this talk, I described representation stability and FI–modules as
tools to generalize the theory of homological stability to sequences
with group actions. This is, in fact, only one corner of the theory that
has been developed by Church–Ellenberg–Farb and others.

The theory also has applications to classical representation theory,
combinatorics, algebraic geometry, and number theory, among other
fields. There are a wealth of open problems and possible new
directions.

Full details and additional applications are given in these preprints by
Church–Farb and Church–Ellenberg–Farb.

Both papers are available on the ArXiv.

The End
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In summary

• The theory of representation stability and FI–modules gives
a language for understanding the patterns of growth of sequences
of group representations.

• It allows us to deduce strong constraints on the structure of such a
sequence using only elementary symmetries.

Comments, questions, and suggestions are welcome.

Contact me at wilsonj@math.uchicago.edu.


