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Motivating example: configuration spaces

Definition (configuration space)
M — topological space
Fn(M) — (ordered) configuration space of M on n points

Fa(M) :={(my,mp,....,mp) € M" | m; # m; forall i+ j} < M"

Fn(M) = M™\ “fat diagonal”

Eg, F2([0,1]) =

_ embeddings
Fn(M)_{{1,2,3,...7n}<—>M} Eg,eF4(Z)
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Motivating example: configuration spaces

Definition (configuration space)

Fan(M) := {(my,mo,...,mp) e M" | m; # m; forall i+ j} < M" J
Artin’s pure braid
2\) _
{Connegtfegn((:ﬁ;?%(;nents} T m1(Fn(D?)) = group PB,,
12 basepoint

Zo

143 eFR(0,1])

B ——

Fn(D?) is connected

<3 e Fa(D?) < :
3 ¢ \4 basepoint
timet 1 2
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Unordered configuration spaces

Sn G Fa(M)

Definition (Unordered configuration space)

The unordered configuration
[ i space of M on n points is

n-element
Cn(M) := Fp(M)/S CalM) = { subsets of M }
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Homology of configuration spaces

Goal: Understand H..(F,(M)).

« A class in
Ha(Fs(M))
(up to sign)

Hard problem: Understand additive relations between these classes.

Key: Fix M.

Package {H.(Fn(M))}, into a single algebraic object, with additional
structure coming from S,—actions and topological operations.
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Classical Homological Stablility for C,(M)
M — connected, noncompact manifold of finite type, dimension > 2

Theorem (McDuff, Segal, 70s))

3 stabilization map Fix M.
t: Ca(M) = Cpiy(M) | 1Cn(M)}n is homologically stable.
For each i, the maps

H t - Hi(Cp(M)) — Hi(Cni1(M))

is an isomorphism for n = 2i.

Hi(Ch(M)) is spanned by: ‘

D
2i points n-2i
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Homological Stablility for F,(M)?

M — connected, noncompact manifold of finite type, dimension > 2

Question: Is {F,(M)}, homologically stable?
Answer: No!

Eg,
Hi (Fa(D?)) = 22) generators a;; = € Hy(Fn(D?))

I

Up to action of Sy, 5
and stabilization map t, @12 = € Hi(F2(D7))
{H; (Fn(D?))}, is generated by:
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Representation Stability for F,(M)

3 stabilization map
M — connected, noncompact
manifold of finite type,
dimension > 2

t: Fa(M) = Faay (M)

Theorem (Church—Ellenberg—Farb, Miller—W (non-orientable M))
Fix M. For each fixed i, {H;(Fn(M))}, is representation stable.

Z[Sni1] - t(Hi(Fo(M); Z)) = Hi(Fns1(M);Z)  forn= 2i.

Hi(Fn,(M)) is spanned by:

Jenny Wilson Representation Stability 26 April 2019 8/16



Further work

Original results: Church (2012), Church—Ellenberg—Farb (2015)

Generalizations, such as broader classes of spaces M, improved
stable ranges, alternate stabilization maps, “higher-order”

stability:

Church—Ellenberg—Farb—Nagpal (2014)
Ellenberg—Wiltshire-Gordon (2015)
Hersh—Reiner (2017)
Church—Miller—Nagpal-Reinhold (2017)
Moseley—Proudfoot—Young (2017)
Litgehetmann (preprint)

Tosteson (preprint)

Miller—W (preprint)
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Palmer (2013)
Kupers—Miller (2015)
Petersen (2017)
Ramos (2017)
Ramos (2018)
Schiessl (preprint)
Bahran (preprint)
Miller—W (preprint)
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Stronger versions & consequences of Theorem

Theorem
Fix M. For each fixed i, {H;(Fn(M))}, is representation stable.

« finite generation

Z[Spi1] - te(Hi(Fa(M); Z)) = H(Fny1(M);Z)  forn > 2i.

¢ polynomial Betti numbers

dimgH;(Fn(M); Q) = polynomial in n of degree < 2i

Eg, dimgH; (Fa(D?); Q) = (Z) - (n)(nz_ﬂ
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Stronger versions & consequences of Theorem

Theorem
Fix M. For each fixed i, {H;(Fn(M))}, is representation stable.

o multiplicity stability

The decomposition of H;(F,(M); Q) into irreducible S,—reps
stabilizes for n = 4i.

Eg, Hi(F2(D?):Q) = VY
Hy (F3(D2);Q) = VD:\:‘ ® VBj
H1(F4(D2);Q) =~ VD:\:\:‘ &) VB:\:‘ &) VHE‘
Hi(Fs(D?)Q) = V1717 ® VB:D:‘ ® VBEF‘
MR = VTITTD @ oo @ o
Hi(F(D2);Q) =~ V ® V @ v
CITTTTTT] u\\\\\
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Stronger versions & consequences of Theorem

Theorem
Fix M. For each fixed i, {H;(F,(M))}, is representation stable.

e character polynomials

The character x H,(r,(m).) IS @ polynomial in the “cycle-counting”
functions, independent of n.

EQ,  Xm,(F(p2):0)(0) = (#2-cycles in o) + (F1¥geein o)
for o € Sy, for all n.
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Stronger versions & consequences of Theorem

Theorem
Fix M. For each fixed i, {H;(F,(M))}, is representation stable.

e recursive resolutions

Forn > 2i + 2, the S,—rep H;(F,(M)) is determined by a partial
resolution by S,—reps

Indg)_,Hi(Fo-2(M)) — Indg_ Hi(Fa—1(M)) — Hi(Fa(M)) — 0

n—1
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Stronger versions & consequences of Theorem
Theorem
Fix M. For each fixed i, {H;(F,(M))}, is representation stable.

¢ free module structure

Hi(Fn(M)) is an induced module of a certain form, induced specific
from certain subreps of

Hi(Fo(M)), Hi(F1(M)), ..., Hi(F2i(M))

Eg, Hi(Fa(D?) = @  Zay,
{ijyc{1,2,....n}
a,-J-:

~ Indg" o Hi(Fa(DP))
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Other instances of representation stability

Analogous behaviour has been established in the (co)homology of:
o certain flag varieties (Weyl group reps)

¢ hyperplane arrangements associated to reflection groups W,
(Wh-reps)

Aut(Fp) and related groups (Sp-reps, etc)

congruence subgroups GLj(A, I) € GL,(A) (Sp- or GL,(A/1)-reps)
mapping class groups and moduli spaces (Sp-reps)

Torelli and related groups (szg(Z)-reps, etc)

Question: What underlying structure is driving these stability patterns? |

Jenny Wilson Representation Stability 26 April 2019 11/16



Fl and FI-modules

Answer: They are finitely presented Fl-modules.

Definition (FI and Fl-modules)
Let FI denote the category of Finite sets and Injective maps.

An Fl-module is a functor V : FI — Ab Gps.

{1} =—{1,2}—{1,2,3}=—>{1,2,3,4}—{1,2,3,4,5} —>

O O O O O
S1 Sa S3 Sy Ss
%
Vi— Vo V3 Vi Vs
O O O O O
S1 Sa S3 Sy Ss
Jenny Wilson
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Fl and FI-modules

Examples of FI-modules
Example: Z S 7Z =7 = ...  trivial Sy-reps
Example: Z — 72 — 7% — ... canonical S, permutation reps
Example: Z[x] < Z[xi, xo] < Z[x1, %, X3] < --- Sy permutes variables
Non-Example: Z 57 =7 = --- alternating S,-reps
Non-Example: Z[Si] — Z[S:] — Z[Ss] — ---  left regular S,-reps
Example: Hi(F(M)) — Hi(F2(M)) — Hi(F3(M)) — ...

Fl-action: FI%P-action:
1- .a $=7 1. .a b |-
7.&. -2 X ¢ g -2
250 < 250 = H Y '
.d -d
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Finite generation

Finite generation
Homogeneous degree-2 polynomials in Z[xy, X2, . . ., Xn]. J
S1 S Ss3
© © ©
Rlzi)g) = Rz, 2] Rlzy,2,23]0) <>
Il Il Il
(x?) (22, 22, 7122) (22, 2%, 22, 1120, 2173, T372)
W W
;I?f T1X9
(;(‘,Il(,‘,l'}lt()l‘S

{Z[x1, ..., Xn](2)}n is finitely generated in degree < 2 by generators

X12 € V1, X1 Xo € Vg.
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Current directions

Goals:

e Develop commutative algebraic tools for proving finiteness
properties of FI-modules.

o Adapt tools to study other categories (eg) encoding actions of
different families of groups.
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Thank you!
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