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Review: Homological algebra and (co)homology of groups

Jenny Wilson • Summer 2021

This review package was originally prepared for the Masterclass “High dimensional coho-
mology of moduli spaces” that took place in Copenhagen June–July 2021.

This review packages assumes familiarity with the following subjects:

• The basic language of category theory

• The basic theory of modules over a ring

• Projective modules

• The basic theory of (co)chain complexes and their homology, chain maps and chain
homotopies, the long exact sequence on homology induced by a short exact sequence
of chain complexes.

• Simplicial, cellular, and singular (co)homology of spaces

• The basic theory of fundamental groups and covering spaces

• Tensor products over a (possibly noncommutative) ring, universal property and right-
exactness

• Hom functors and left-exactness

• Representations of a group G, and relationship to the group algebra

Asterisks indicate more advanced exercises (or exercises that employ spectral sequences).
The reader may wish to skip these at first reading.

Please help me polish these notes by sending corrections to jchw@umich.edu!
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1 Review: Projective resolutions

Throughout these notes we assume all rings have unit 1.
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1.1 Projective R-modules

We first review the equivalent definitions of a projective module.

Exercise 1. Let R be a ring and P an R-module. Each of the folllowing state-
ments may be taken as the defining statement that P is projective. Prove that
these statements are equivalent.

(i) For every surjective R-module homomorphism d : N → M and every R-
module homomorphism f : P → M , there is a (not necessarily unique)
homomorphism g : P → N such that d ◦ h = f .

P

N M 0

∃ g
f

d

(ii) Any short exact sequence of R-modules of the following form is split

0 −→ A −→ B −→ P −→ 0.

(iii) P is a direct summand of a free R-module

(iv) The covariant functor M 7→ HomR(P,M) from the category of R-modules
to the category of abelian groups is an exact functor.

1.2 Projective resolutions

From these equivalent definitions we can establish some foundational properties of pro-
jective resolutions.

Definition I. (Resolutions). Let R be a ring. Given an R-module M , an [adjective] resolu-
tion of M is an exact sequence of R-modules

−→ Pn −→ · · · −→ P2 −→ P1 −→ P0 −→M −→ 0

where each term Pi is an [adjective] R-module. In particular, a projective resolution of M
is a resolution as above by projective R-modules Pi.

Exercise 2. Explain why every R-module M has a projective resolution (in fact,
a free resolution).
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The following exercises are the keys to the construction of morphisms of projective resolu-
tions, and chain homotopies of morphisms.

Exercise 3. (a) Suppose the following diagram

P Q

N M L

d

f

d1 d2

satisfies

• The bottom row is exact
• d2 ◦ f ◦ d = 0

• P is projective

Show that there exists an R-module map g making the diagram commute:

P Q

N M L

∃ g

d

f

d1 d2

Exercise 4. (a) Suppose the following (not necessarily commutative) diagram

P Q

L N M

f

d

h

d0 d1

satisfies

• The bottom row is exact
• d1 ◦ h ◦ d = d1 ◦ f
• P is projective

Show that it is possible to find a map k as below such that d0 ◦k+h◦d = f .

P Q

L N M

∃ k
f

d

h

d0 d1
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With these exercises we can prove the following.

Theorem II. (The Fundamental Theorem of Homological Algebra). Let R be a ring. Let
(C, δ) and (C ′, δ′) be chain complexes of R-modules and let r be an integer. Let fi : Ci → C ′i be a
family of maps for 0 ≤ i ≤ r making the following diagram commute.

. . . Cn+1 Cr Cr−1 . . . C1 C0 0

. . . C ′r+1 C ′r C ′r−1 · · · C ′1 C ′0 0

∂r+1 ∂r

fr

∂r−1

fr−1

∂2 ∂1

f1 f0

δr+1 δr δr−1 δ2 δ1

Assume

• Ci is projective for all i > r,

• Hi(C
′) = 0 for all i ≥ r.

Then the maps fi extend to a chain map f : (C, δ)→ (C ′, δ′),

. . . Cn+1 Cn Cn−1 . . . C1 C0 0

. . . C ′n+1 C ′n C ′n−1 · · · C ′1 C ′0 0

∂n+1

fn+1

∂n

fn

∂n−1

fn−1

∂2 ∂1

f1 f0

δn+1 δn δn−1 δ2 δ1

and this chain map is unique up to homotopy. In fact, any two extensions are homotopic by a chain
homotopy h such that hi = 0 for all i ≤ r.

Exercise 5. Prove Theorem II.

Exercise 6. Deduce the following consequences of Theorem II, Theorems III and
IV.

Theorem III. Let R be a ring. Let P• →M and P ′• →M be projective resolutions of an R-module
M . Then there exists a chain map f as in the following commutative diagram,

· · · Pn+1 Pn Pn−1 · · · P0 M 0

· · · P ′n+1 P ′n P ′n−1 · · · P ′0 M 0

∂n+1

fn+1

∂n

fn

∂n−1

fn−1

∂1 ∂0

f0 idM

δn+1 δn δn−1 δ1 ε

This chain map is unique up to homotopy, and is a homotopy equivalence.

Theorem IV. LetM,N be modules over a ringR, and let f0 :M → N be anR-module map. Then
for any projective resolutions P• → M and P ′• → N of M and N , there is a chain map (unique up
to homotopy) extending the map f0.
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1.3 Projective resolutions and short exact sequences

Exercise 7. Let R be a ring and

0 −→ L −→M −→ N −→ 0

a short exact sequence of R-modules. Let P• → L and P ′• → N be projective
resolutions. Show that there is a projective resolution of M by the projective
modules Pn ⊕ P ′n making the following diagram commute.

0 0 0 0 0

· · · Pn+1 Pn Pn−1 · · · P0 L 0

· · · Pn+1 ⊕ P ′n+1 Pn ⊕ P ′n Pn−1 ⊕ P ′n−1 · · · P0 ⊕ P ′0 M 0

· · · P ′n+1 P ′n P ′n−1 · · · P ′0 N 0

0 0 0 0 0

The columns of this diagram are split exact.

2 The Tor functor

The next two sections draw on Dummit–Foote [DF, Chapter 17.1].

2.1 The Tor functor and the associated long exact sequence

Definition V. (The Tor functor). Let R be a ring. Let D be a right R-module and let B be
a left R-module. Let

· · · Pn+1 Pn Pn−1 · · · P0 B 0
dn+1 dn dn−1 d1 ε

be a projective resolution of B by left R-modules. Then we define the groups TorR∗ (D,B)
to be the homology of the chain complex
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· · · D ⊗R Pn+1 D ⊗R Pn D ⊗R Pn−1 · · · D ⊗R P0 0
1⊗dn+1 1⊗dn 1⊗dn−1 1⊗d1

The following exercises establish well-definedness and some basic properties of Tor.

Exercise 8. Verify that the sequence (D ⊗ P•, 1⊗ d•) is indeed a chain complex,
that is, verify that

(1⊗ dn−1) ◦ (1⊗ dn) = 0

Exercise 9. Verify that the groups TorR∗ (D,B) do not depend on the choice of
projective resolution of B. Hint: See Theorem III.

Exercise 10. Verify that, for fixed D, the assignment B 7→ TorR∗ (D,B) is functo-
rial. Hint: See Theorem IV.

Exercise 11. Verify that there is a natural isomorphism TorR0 (D,B) ∼= D ⊗R B.

The following exercise gives some practice in compuing Tor groups.

Exercise 12. (a) Verify that

0 −→ Z m−→ Z −→ Z/mZ −→ 0

is a projective resolution of the Z-module Z/mZ.

(b) Let D be a Z-module. Verify that

TorZ0 (D,Z/mZ) ∼= D ⊗ Z/mZ ∼= D/mD

TorZ1 (D,Z/mZ) ∼= {d ∈ D | md = 0}, the subgroup annihilated by m,

TorZn(D,Z/mZ) = 0 for all n ≥ 2.

Exercise 13. Let D be a Z/mZ-module (and, in particular, a Z-module). What is
TorZ/mZ

∗ (D,Z/mZ)? Conclude that Tor groups depend on the ring R.

The Tor functors measure, in a sense, the failure of the tensor product to be exact, as we
see in the following theorem.

Theorem VI. Let R be a ring and

0 −→ L −→M −→ N −→ 0

a short exact sequence of left R-modules. Then there is a long exact sequence
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· · · TorRi+1(D,N) TorRi (D,L) TorRi (D,M) TorRi (D,N) TorRi−1(D,L) · · ·

· · · TorR1 (D,N) D ⊗R L D ⊗RM D ⊗R N 0

Exercise 14. Prove Theorem VI. See Exercise 7.

2.2 Flat modules

Definition VII. (Flat modules). Let R be a ring. A left R-module D is flat if the functor
B 7→ D ⊗R B is an exact functor. Similarly, a right R-module D is flat if the functor B 7→
B ⊗R D is exact.

Exercise 15. Show that a direct summand of a flat module is flat.

Exercise 16. Show that projective modules are flat.

Exercise 17. Suppose that A andB are flatR-modules. Show that A⊗RB is flat.

Exercise 18. Let G be a group. Show that Q[G] is a flat Z[G]-module.

Exercise 19. Let D be a (left) module over a ring R. Show that the following are
equivalent.

(i) D is flat.

(ii) TorR1 (M,D) = 0 for every right R-module M .

(iii) TorRi (M,D) = 0 for every right R-module M and all i ≥ 1.

2.3 Modes of computing TorR∗ (D,B)

The groups TorR∗ (D,B) can in fact be calculated using projective resolutions of either D or
B.

Theorem VIII. Let R be a ring. Let D be a right R-module and let B be a left R-module. Let

· · · Pn+1 Pn Pn−1 · · · P0 D 0
dn+1 dn dn−1 d1 ε

be a projective resolution of D by right R-modules. Then TorR∗ (D,B) is equal to the homology of
the chain complex
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· · · Pn+1 ⊗R B Pn ⊗R B Pn−1 ⊗R B · · · P0 ⊗R B 0
dn+1⊗1 dn⊗1 dn−1⊗1 d1⊗1

Exercise* 20. Let R be a ring. Let D be a right R-module and let B be a left
R-module. Let P• → B and Q• → D be projective resolutions. Use the double
complex P• ⊗R Q• to prove Theorem VIII.
Hint: See Rotman [R, Theorem 10.22].

Exercise 21. Let
0 −→ L −→M −→ N −→ 0

a short exact sequence of right R-modules. State and prove the existence of the
long exact sequence associated to the functor TorR∗ (−, B), analogous to Theorem
VI.

The following theorem states that, to compute TorR∗ (D,B), it suffices to take flat resolutions
P• → B or Q• → D. The terms Pn and Qn need not be projective.

Exercise* 22. Prove the following theorem.
Hint: See Rotman [R, Corollary 10.23].

Theorem IX. Let R be a ring. Let D be a right R-module and let B be a left R-module. Then
the description of TorR∗ (D,B) given in Definition V (respectively, Theorem VIII) holds even if we
assume the resolution of B (respectively, D) is merely flat and not necessarily projective.

2.4 Change of rings for Tor

Theorem X. Let φ : R → S be a ring homomorphism (preserving unit), so every S-module may
be viewed as an R-module. Then

• Let B be a right S-module and C a left R-module. If S is flat as a R-module, then there are
natural isomorphisms

TorRp (B,C)
∼= TorSp (B, S ⊗R C) for all p ∈ Z.

• Let B be a right R-module and C a left S-module. If S is flat as a R-module, then there are
natural isomorphisms

TorRp (B,C)
∼= TorSp (B ⊗R S,C) for all p ∈ Z.
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Exercise* 23. Prove Theorem X. Hint: Consider S ⊗R P•, where P• is a free
resolution of C by R-modules. See Bieri [Bi, Page 1, Section 2.]. See also Baker
[Ba, Example 2.2].

Exercise 24. Let G be a group, M a left Z[G]-module, and V a right Q[G]-
module. Prove that

TorZ[G]
∗ (M,V ) ∼= TorQ[G]

∗ (M ⊗Z Q, V )

3 The Ext functor

3.1 The Ext functor and the associated long exact sequences

Definition XI. (The Ext functor). Let A and D be modules over a ring R. Let

· · · Pn+1 Pn Pn−1 · · · P0 A 0
dn+1 dn dn−1 d1 ε

be a projective resolution of A. Then we define the groups Ext∗R(A,D) to be the homology
of the cochain complex

0 HomR(P0, D) HomR(P1, D) · · · HomR(Pn−1, D) HomR(Pn, D) · · ·
d∗
1 d∗

2
d∗
n−1 d∗

n
d∗
n+1

Concretely,

ExtnR(A,D) =
ker(d∗n+1)

im(d∗n)

Exercise 25. Verify that the sequence (HomR(P•, D), d∗•) is indeed a chain com-
plex.

Exercise 26. Verify that the groups Ext∗R(A,D) do not depend on the choice of
projective resolution of A.

Exercise 27. Verify that, for fixed D, the assignment A 7→ Ext∗R(A,D) defines a
functor from (left) R-modules to abelian groups.

Exercise 28. Verify that there is a natural isomorphism Ext0R(A,D) ∼= HomR(A,D).
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Exercise 29. Let D be a Z-module. Verify that

Ext0Z(Z/mZ, D) ∼= {d ∈ D | md = 0}, the subgroup annihilated by m,

Ext1Z(Z/mZ, D) ∼= D/mD

ExtnZ(Z/mZ, D) = 0 for all n ≥ 2.

As with Tor, the Ext functor in a sense measures the failure of the Hom functor to be exact.
It determines the following two long exact sequences.

Theorem XII. Let R be a ring and

0 −→ L −→M −→ N −→ 0

a short exact sequence of R-modules. Then there is a long exact sequence

0 HomR(N,D) HomR(M,D) HomR(L,D) Ext1R(N,D) · · ·

· · · Exti−1R (L,D) ExtiR(N,D) ExtiR(M,D) ExtiR(L,D) Exti+1
R (N,D) · · ·

and a long exact sequence

0 HomR(D,L) HomR(D,M) HomR(D,N) Ext1R(D,L) · · ·

· · · Exti−1R (D,N) ExtiR(D,L) ExtiR(D,M) ExtiR(D,N) Exti+1
R (D,L) · · ·

Exercise 30. Prove Theorem XII. Hint: For the first long exact sequence, use
Exercise 7. For the second, apply the functors HomR(−, L), HomR(−,M), and
HomR(−, N) to a projective resolution for D.

3.2 Injective modules

Definition XIII. (Injective modules). Let R be a ring. A left R-module D is injective if the
contravariant functor B 7→ HomR(B,D) is an exact functor from left R-modules to abelian
groups.

Exercise 31. Show that Z is not an injective Z-module. Conclude in particular
that projective modules need not be injective.
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Exercise 32. Let D be a left module over a ring R. Show that the following are
equivalent.

(i) D is injective, that is, B 7→ HomR(B,D) is an exact functor.
(ii) For any R-modules M,N , any short exact sequence of the following form

is split
0 −→ D −→M −→ N −→ 0.

(iii) If D is a submodule of an R-module M , then D has a direct complement
in M , that is, there is some L ⊆ M so that M is the internal direct sum
M = D ⊕ L.

(iv) If f : L→ M is an injective map of R-modules, and g : L→ D is any map
of R-modules, then there exists a (not necessarily unique) extension of g to
M making the following diagram commute.

0 L M

D

f

g
∃h

(v) Ext1R(M,D) = 0 for every right R-module M .
(vi) ExtiR(M,D) = 0 for every right R-module M and all i ≥ 1.

Exercise* 33. Prove that every R-module M has an injective coresolution

0 M I0 I1 I2 · · ·ε d1 d2

Hint: See Rotman [R, Theorem 3.38].

3.3 Modes of computing Ext∗R(A,D)

As with Tor, we can compute the groups Ext∗R(A,D) using a resolution of either variable.

Theorem XIV. Let A and D be modules over a ring R. Let

0 D I0 I1 I2 · · ·ε d1 d2

be an injective coresolution of D. Then the groups Ext∗R(A,D) are equal to the homology of the
cochain complex

0 HomR(A, I0) HomR(A, I1) · · · HomR(A, In−1) HomR(A, In) · · ·
d∗
1 d∗

2
d∗
n−1 d∗

n
d∗
n+1

Exercise* 34. Prove Theorem XIV. Hint: See Rotman [R, Theorem 6.67].
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3.4 Change of rings for Ext

Theorem XV. Let φ : R→ S be a ring homomorphism (preserving unit), so every S-module may
be viewed as an R-module.

• Let A be a left S-module and C a left R-module. If S is flat as an R-module, then there are
natural isomorphisms

ExtpR(C,A)
∼= ExtpS(S ⊗R C,A) for all p ∈ Z.

• Let A be a left R-module and C a left S-module. If S is projective as an R-module, then there
are natural isomorphisms

ExtpR(C,A)
∼= ExtpS(C,HomR(S,A)) for all p ∈ Z.

Exercise* 35. Prove Theorem XV. Hint: Consider S ⊗R P•, where P• is a free
resolution of C by R-modules. Then, consider HomR(S, I•), where A→ I• is an
injective coresolution of A by R-modules. See Bieri [Bi, Page 1, Section 2.]. See
also Baker [Ba, Example 2.4].

Exercise 36. Let G be a group, M a right Z[G]-module, and V a right Q[G]-
module. Prove that

Ext∗Z[G](M,V ) ∼= Ext∗Q[G](M ⊗Z Q, V )

4 Group (co)homology

4.1 The definition of group homology

Definition XVI. (Group homology). Let G be a (discrete) group. Then the homology of G
is defined to be

H∗(G) = TorZ[G]
∗ (Z,Z).

More generally, if M is a Z[G]-module, then we define the homology of G with coefficients in
M to be

H∗(G;M) = TorZ[G]
∗ (Z,M).

Observe that H∗(G) is equal to H∗(G;Z), where Z is the trivial Z[G]-module.

Using the results on the Tor functor, we can therefore compute H∗(G) in the following
ways.
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(1) Take a projective (or, more generally, flat) resolution of Z by right Z[G]-modules,

· · · Pn+1 Pn Pn−1 · · · P0 Z 0

Delete the term P−1 = Z and apply the functor − ⊗Z[G] M . Then H∗(G;M) is the
homology of the complex

· · · Pn+1 ⊗Z[G] M Pn ⊗Z[G] M Pn−1 ⊗Z[G] M · · · P0 ⊗Z[G] M 0

(2) Take a projective (or, more generally, flat) resolution of M by left Z[G]-modules,

· · · Pn+1′ P ′n P ′n−1 · · · P ′0 M 0

Delete the term P ′−1 = M and apply the functor Z ⊗Z[G] −. Then H∗(G;M) is the
homology of the complex

· · · Z⊗Z[G] P
′
n+1 Z⊗Z[G] P

′
n Z⊗Z[G] P

′
n−1 · · · Z⊗Z[G] P

′
0 0

Exercise 37. (a) Let R be a ring. Prove that

TorR[G]
∗ (R,B) ∼= TorZ[G]

∗ (Z, B)

for all right R[G]-modules B. Conclude that

H∗(G;B) ∼= TorR[G]
∗ (R,B).

In particular, if V is a Q[G]-module, then

H∗(G;V ) ∼= TorQ[G]
∗ (Q, V ).

Hint: Let F• → Z be a free resolution of Z by Z[G]-modules. First verify
that

R⊗Z F• → R⊗Z Z ∼= R

is still exact.
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(b) Describe the two methods of computing the groups H∗(G;B) using R[G]-
modules (in the spirit of the steps above).

Definition XVII. (Invariants; Coinvariants). Let G be a group and M a left Z[G]-module.
The group of invariants of M , denoted MG, is the submodule of M

MG = {m ∈M | gm = m for all g ∈ G}.

The group of coinvariants of M , denoted MG, is defined to be the quotient of M

MG =M/〈gm−m |g ∈ G,m ∈M〉.

The groupMG is the largest submodule ofM with trivialG action, andMG is the largest
quotient of M on with trivial G action.

Exercise 38. (a) Let M be a left Z[G]-module. Show that Z⊗Z[G] M =MG.
(b) Formulate the definition of coinvariants for right Z[G]-modules, and prove

the analogous result for the functor −⊗Z[G] Z.

From this exercise, we can view H∗(G;M) as the homology of the complex

· · · (P ′n+1)G (P ′n)G (P ′n−1)G · · · (P ′0)G 0

arising from a flat resolution P ′• → M . In particular, if we can construct a flat resolution of
M such that (P ′n)G = 0 for some n, we can deduce that Hn(G;M) = 0.

4.2 The standard resolution

Exercise 39. (The standard resolution). Let C∗ be the chain complex defined as
follows. The group Cn is the free abelian group

Cn = Z〈(g0, g1, g2, . . . , gn) | gi ∈ G〉

with diagonal G-action

g · (g0, g1, g2, . . . , gn) = (gg0, gg1, gg2, . . . , ggn).

The differential is

dn : Cn −→ Cn−1

(g0, . . . , gn) 7−→
∑
i

(−1)i(g0, . . . , ĝi, . . . , gn)

and augmentation ε : C0 → Z defined by ε(g0) = 1 for all g0 ∈ G.
Verify that Cn is a free Z[G]-module, and dn is a differential.
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(a)(b) Show that, if G is finite, then C∗ are the simplicial chains on a simplex with
vertex set G. Deduce that C∗ is a free resolution of Z by free Z[G]-modules.

(c) Show that, for any G, the map

h : Cn −→ Cn+1

(g0, g1, . . . , gn) 7−→ (1, g0, g1, . . . , gn)

is a contracting chain homotopy. Deduce that C∗ is a free resolution of Z
by free Z[G]-modules. (Note that h is not a map of Z[G]-modules – why is
this acceptable?)

(d) To use this resolution to compute H∗(G), we pass to G-coinvariants. Verify
that the orbits of (n + 1)-tuples are uniquely represented by tuples of the
form (1, g1, g1g2, . . . , g1g2 · · · gn).

(e) It is standard to write [g1|g2| · · · |gn] for (1, g1, g1g2, . . . , g1g2 · · · gn). Describe
the groups (Cn)G the maps induced by the differentials dn in this new ”bar”
notation.

Exercise 40. Let C∗ denote the quotient of the standard resolution C∗ by the
subcomplex spanned by tuples (g0, g1, . . . , gn) where gi = gi+1 for some i. Verify
that C∗ is still a free resolution of Z by Z[G]-modules (called the normalized
standard resolution) and describe the chain complex of coinvariants.
Hint: Consider the map indcued by h.

Exercise 41. Compute H∗(G) when G is a finite cyclic group.

4.3 The relationship to K(G, 1) spaces

Definition XVIII. Let G be a group. A G-complex is a CW complex X with an action of G
that permutes the cells. The complex X is a free G-complex if G freely permutes the cells.

The following exercise shows that the group homology of a group G is equal to the ho-
mology of a K(G, 1)-space, a connected CW complex with fundamental group G and con-
tractible universal cover. Such a CW complex always exists and is unique up to homotopy.

Exercise 42.

(a) Verify that ifX is a (free)G-complex, then its cellular chain complex C∗(X)
is a complex of (free) Z[G]-modules.

(b) Let X be a connected CW complex with π1(X) = G. Explain why its uni-
versal cover p : X̃ → X inherits the structure of a free G-complex, such
that G acts transitively on the cells p−1(σ) in the preimage of a cell σ ∈ X .
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(c) Show that C∗(X) ∼= C∗(X̃)G.

(d) Let X be a contractible, free G-complex. Show that C∗(X) is a free resolu-
tion of Z by Z[G]-modules.

(e) Suppose that X is a connected CW complex with a contractible universal
cover. Show that

H∗(X) = H∗(G)

where H∗(X) is the cellular homology of X , and H∗(G) is the group ho-
mology of its fundamental group G = π1(X).

Exercise 43. Describe K(G, 1) spaces for the folllowing groups G: Z, Z/2Z, the
free group Fn, and the fundamental group of a closed connected orientable sur-
face of genus at least 1.

4.4 The definition of group cohomology

Definition XIX. (Group cohomology). Let G be a (discrete) group. Then the cohomology of
G is defined to be

H∗(G) = Ext∗Z[G](Z,Z).
More generally, if M is a Z[G]-module, then we define the cohomology of G with coefficients
in M to be

H∗(G;M) = Ext∗Z[G](Z,M).

Exercise 44. Describe the two methods of computing H∗(G;M) in the style of
Section 4.1.

Exercise 45. Let G be a group and X a K(G, 1)-space. Show that

H∗(X) ∼= H∗(G).

Exercise 46. Let R be a ring. Prove that

Ext∗R[G](R,A)
∼= Ext∗Z[G](Z, A)

for all R[G]-modules A. Conclude that

H∗(G;A) ∼= Ext∗R[G](R,A),

and describe the ramifications for computing the groups H∗(G;A).
In particular, if V is a Q[G]-module, then

H∗(G;V ) ∼= Ext∗Q[G](Q, V ).
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4.5 Some motivation: characteristic classes

In this section, we describe a major reason to study group cohomology.

K(G, 1)-spaces are special cases of the classifying space BG of a topological space G; when
G is discrete then BG is precisely the associated K(G, 1) space. More generally, we define
BG to be a quotient of a (weakly) contractible space EG by a proper free action of G.

The quotient map EG→ BG is a principal G-bundle, and is universal in the sense that every
principal G-bundle over a CW complex X is isomorphic to a pullback of this bundle along
some map X → BG. In fact, there is bijection

{principal G-bundles over X up to isomorphism} ←→ {maps X → BG up to homotopy}

The cohomology classes H∗(BG) of BG can therefore be used to define invariants of prin-
cipal G-bundles over X . Let ξ ∈ H∗(BG) and let Y → X be a principal G-bundle. Then we
may realize this bundle as the pullback along a map f : X → BG, and we may consider
the class f ∗(ξ) ∈ H∗(X). In this manner, for each fixed ξ ∈ H∗(BG) we can associate to
every isomorphism class of principal G-bundles over X a cohomology class of X . These
cohomology classes are called characteristic classes, and measure in a sense the ‘twistedness’
of the bundle.

Formally, define EG to be a contravariant functor from the category of CW complexes and
continuous maps to the category of sets,

EG(X) = {isomorphism classes of principal G-bundles over X}

sending a continuous map of spaces f : X → Y to a map of G-bundles defined by the
pullback operation. The functor EG factors through the homotopy category of spaces. A
characteristic class c of principal G-bundles is defined to be a natural transformation from
EG to a cohomology functor H∗, viewed as a functor to the category of sets. The Yoneda
lemma then implies that there is a bijection{

characteristic classes of principal G-bundles
c : EG =⇒ H∗(−;A)

}
←→ H∗(BG;A)

and so we can understand the cohomology group H∗(BG;A) as parameterizing character-
istic classes of principal G-bundles.

There is an analogous theory of characteristic classes for other classes of G-bundles, such
as vector bundles (G = GL(V )), M -bundles for a manifold M (G = Homeo(M)), n-sheeted
covering spaces (G = Sn, the symmetric group), and more. Characteristic classes play a
significant role in algebraic topology, differential geometry, and algebraic geometry.
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4.6 Induction and coinduction

Toward our eventual goal of defining and studying the virtual cohomological dimension
of a group, we now wish to introduce the background needed to state Shapiro’s lemma.
This result will be a key tool in relating the cohomology of a group to that of its subgroups.

Definition XX. (Induction and co-induction). Let G be a group and H ⊆ G a subgroup.
If M is a Z[H]-module, then we can construct from M an induced Z[G]-module IndGHM by
extension of scalars:

IndGHM = Z[G]⊗Z[H] M.

and a coinduced Z[G]-module by

CoindGHM = HomZ[H](Z[G],M).

Exercise 47. Describe how Z[G] acts on IndGHM and CoindGHM .

Exercise 48.

(a) Describe Z[G] as a Z[H]-module.
(b) Show that, as an abelian group,

IndGHM ∼=
⊕

σH∈G/H

M

and explain how G acts on the right-hand side. (Some authors write the
above decomposition as IndGHM ∼=

⊕
σH∈G/H σM to be more suggestive of

this G-action).
(c) Show that, as an abelian group,

CoindGHM ∼=
∏

σH∈G/H

M

(d) Verify that if the index [G : H] is finite, then there is an isomorphism of
Z[G]-modules

IndGHM ∼= CoindGHM

for any Z[H]-module M .
Hint: First show that the map

φ :M −→ HomZ[H](Z[G],M)

φ(m)(g) =

{
gm, g ∈ H
0, g /∈ H

extends to a Z[G]-module map Z[G]⊗Z[H] M → HomZ[H](Z[G],M).
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Exercise 49. LetH be a subgroup of a groupG. Suppose thatN is a Z[G] module
such that

• As an abelian group N ∼=
⊕

i∈IMi

• G permutes the summands transitively, in the sense that there is a transi-
tive action of G on I and gMi =Mgi

• H is the stabilizer of Mi0 for some i0
Show that N ∼= IndGHMi0 .

Exercise* 50. Show that induction and coinduction are left and right adjoint
functors, respectively, to restriction of scalars.

4.7 Shapiro’s Lemma

Theorem XXI. (Shapiro’s Lemma). Let H be a subgroup of a group G and let M be an H-
module. Then

H∗(H,M) ∼= H∗(G; IndGHM) and H∗(H,M) ∼= H∗(G;CoindGHM).

Exercise 51. Prove Shapiro’s Lemma. Hint: If F is a free Z[G]-module, then

F ⊗Z[H] M ∼= F ⊗Z[G] Z[G]⊗Z[H] M ∼= F ⊗Z[G] (IndGHM).

and
HomZ[H](F,M) ∼= HomZ[G](F,CoindGHM).

4.8 The rational cohomology of orbit spaces with finite stabilizers

We saw in Exercise 42 that, if X is a contractible simplicial complex with a free simpli-
cial action of a group G, then H∗(G) ∼= H∗(X/G), in fact, H∗(G;A) ∼= H∗(X/G;A) for any
abelian group A. In this section we will see that, in order to compute H∗(G;Q), we may
relax our assumptions on the simplicial G-complex X . It will suffice to assume that G acts
simplicially with finite stabilizers.

We start with a more general result. The following lemma is formulated as in Church–
Putman [CP, Lemma 3.2].

Lemma XXII. Let G be a group, let X be a simplicial complex on which G acts simplicially, and
let Y be a subcomplex of X which is preserved by the G-action. For some n ≥ 0, assume that the
setwise stabilizer subgroup Gσ is finite for every n-simplex σ of X that is not contained in Y . Then
the Q[G]-module Cn(X, Y ;Q) of relative simplicial n-chains is flat.
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Exercise 52. Prove Lemma XXII.
Hint: For a simplex σ, define Mσ to be the Q[G]-module generated by σ. First
use Exercise 49 to argue that

Mσ
∼= IndGGσQσ,

for an appropriately defined Q[Gσ]-module Qσ with underlying abelian group
Q. See the exercises in Section 2.2.

Exercise 53. Let G be a group, let X be a simplicial complex on which G acts
simplicially.

(a) Explain why (possibly after barycentrically subdividing) we may assume
that the setwise stabilizer Gσ of any simplex σ fixes σ pointwise.

(b) Explain why the orbit space X/G inherits a CW structure.
(Note: possibly after by further subdivision of the simplices of X , we can
arrange for this induced CW structure on the quotient to be simplicial).

(c) Prove the following theorem.

Theorem XXIII. Let G be a group, and let X be a contractible simplicial complex on which G acts
simplicially. Assume that the stabilizer subgroup Gσ is finite for every simplex σ of X . Then

H∗(G;Q) ∼= H∗(X/G;Q).

5 (Virtual) cohomological dimension

5.1 Projective dimension and cohomological dimension

Definition XXIV. (Projective dimension). Let R be a ring and M an R-module. The pro-
jective dimension of M , denoted pdR(M), is the minimal n such that there exists a projective
resolution of length n,

0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→M −→ 0.

Theorem XXV. Let M be a module over a ring R. The following are equivalent.

(i) pdR(M) ≤ n

(ii) ExtiR(M,−) = 0 for i > n.

(iii) Extn+1
R (M,−) = 0.
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(iv) If
0 −→ K −→ Pn−1 −→ · · · −→ P0 −→M −→ 0

is an exact sequence with each Pi projective, then K is projective.

Exercise 54. Prove Theorem XXV. Hint: See Brown [Br, VIII Theorem 2.1].

Definition XXVI. (Cohomological dimension). Let G be a group. Then the cohomological
dimension of G, denoted cd(G), is defined to be pdZ[G](Z).

Exercise 55. Prove the following equalities.

cd(G) = pdZ[G](Z)
= inf{n | Z admits a projective resolution of length n}
= inf{n | H i(G;−) = 0 for i > n}
= sup{n | Hn(G;M) 6= 0 for some Z[G]-module M}.

Exercise 56. Prove cd(G) = 0 if and only if G is trivial.

Exercise 57. Use topology to show that, if G is a free group, then cd(G) = 1.
(Stallings and Swan proved the converse).

5.2 Serre’s theorem on finite index subgroups

The goal of this subsection is the following theorem.

Theorem XXVII. (Serre’s Theorem). If G is a torsion-free group and H is a finite-index sub-
group, then cd(H) = cd(G).

The following exercises explore the relationship between the cohomological dimension of
a group and its subgroups.

Exercise 58. Let G be a group and H ⊆ G a subgroup.

(a) Let P• → Z be a free resolution of Z by Z[G]-modules. Explain why P• → Z
can be viewed as a free resolution of Z by Z[H]-modules.

(b) Deduce that cd(H) ≤ cd(G).

(c) Further deduce that the complex (P•)H computes H∗(H).
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Exercise 59.

(a) Prove that a finite cyclic group C has cd(C) =∞.

(b) Conclude that a group with finite cohomological dimension must be torsion-
free.

Exercise 60.

(a) Suppose G is a group with finite cohomological dimension. Show that

cd(G) = sup{n | Hn(G;F ) 6= 0 for some free Z[G]-module F}.

Hint: The functor Hcd(G)(G,−) is right exact. Any Z[G]-module M is a
quotient of a free Z[G]-module.

(b) Let H be a subgroup of a group G. Assume [G : H] < ∞, and that G has
finite cohomological dimension. Show that cd(H) = cd(G).
Hint: Exercise 48 (d) and Shapiro’s Lemma.

Exercise* 61. Prove Theorem XXVII.
Hint: By Exercise 60 it is enough to show

cd(H) <∞ =⇒ cd(G) <∞.

See Brown [Br, Theorem VIII.3.1].

Exercise* 62. Use the Hochschild–Serre spectral sequence to prove the follow-
ing statement. If

0 −→ K −→ G −→ Q −→ 0

is a short exact sequence of groups, then

cd(G) ≤ cd(K) + cd(Q).

Exercise* 63. Show that for any group G there is a free resolution of Z by Z[G]-
modules of length equal to cd(G).
Hint: See Brown [Br, Proposition 2.6].

5.3 Virtual notions

Definition XXVIII. We say a group G virtually has a property if some finite-index sub-
group of G has the property. For example, the group G is virtually torsion-free if it contains
a torsion-free subgroup of finite index.

Proposition XXIX. If G is virtually torsion-free, then all torsion-free subgroups of G of finite
index have the same cohomological dimension.
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Exercise 64. Use Serre’s theorem (Theorem XXVII) to prove Proposition XXIX.
Hint: Show that the intersection of finite-index subgroups is finite index.

Proposition XXIX implies that the following concept is well-defined.

Definition XXX. (Virtual cohomological dimension). Let G be a virtually torsion-free
group. Then the virtual cohomological dimension of G, denoted vcd(G), is the common coho-
mological dimension of its torsion-free finite-index subgroups.

Exercise 65. Suppose that G is a virtually torsion-free group. Suppose that G
acts simplicially on a contractible simplicial complex X , and that the stabilizer
Gσ of any simplex σ is finite, as in Theorem XXIII. Let H be a torsion-free sub-
group of G. Explain why X/H is a K(H, 1)-space.

Exercise 66. The rational cohomological dimension cdQ(G) of a group G is defined
as pdQ[G](Q), the projective dimension of the trivial Q[G]-module Q.

(a) Show that, for any group G,

cdQ(G) = max{k | Hk(G;V ) 6= 0 for any Q[G]-module V }.

(b) Show that, for any group G, cdQ(G) ≤ cd(G).

(c)∗ Let G be a group. Adapt the proofs of Serre’s theorem (Theorem XXVII)
and Proposition XXIX to show that cdQ(G) agrees with the rational co-
homological dimension of any finite-index subgroup of G. (See Bieri [Bi,
Theorem 5.1].)

(d) Let G be a group containing torsion-free finite-index subgroups. Deduce
that cdQ(G) ≤ vcd(G). In particular, vcd(G) is an upper bound on the
degree k such that Hk(G;V ) can be nonzero for any Q[G]-module V .

The converse to this final statement, however, is not true: there exist (torsion-
free) groups with cdQ(G) < cd(G) <∞, and therefore groups G witth cdQ(G) <
vcd(G) < ∞. The introduction of Bestvina–Mess [BM] has a construction of
such a group.
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6 Groups of type FP

6.1 Groups of type FPn and FP∞

The following definitions generalize the concepts of finite generation and finite presentabil-
ity.

Definition XXXI. (Finite type resolutions, FPn). Let R be a ring. A resolution or partial
resolution of R-modules is of finite type if each term is finitely generated. An R-module M
is of type FPn (for some n ≥ 0) if it admits a partial projective resolution

Pn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→M −→ 0.

We say that a group G is of type FPn if the trivial representation Z is a Z[G]-module of type
FPn.

Observe that an R-module M is of type FP0 precisely if it is finitely generated, and type
FP1 precisely if it is finitely presented.

Exercise* 67. Fix an R-module M and n ≥ 0. Prove that the following are
equivalent.

(i) M admits a partial resolution

Fn −→ Fn−1 −→ · · · −→ F1 −→ F0 −→M −→ 0

with Fi free of finite rank.

(ii) M is of type FPn.

(iii) M is finitely generated, and for every partial resolution

Pk −→ · · · −→ P1 −→ P0 −→M −→ 0

with k < n, the kernel ker{Pk → Pk−1} is finitely generated.

Exercise 68. Show that the conditions of the following definition are, in fact,
equivalent.

Definition XXXII. (Type FP∞). AnR-moduleM is of type FP∞ if the following equivalent
conditions hold.

(i) M admits a free resolution of finite type

(ii) M admits a projective resolution of finite type
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(iii) M is of type FPn for all integers n ≥ 0.

A group G is of type FP∞ if the trivial representation Z is a Z[G]-module of type FP∞.

Exercise 69. Let G be a group and H a finite-index subgroup. Show that G has
type FPn for some 0 ≤ n ≤ ∞ if and only if H does.

6.2 Groups of type FP

Definition XXXIII. (Type FP ). A group G is of type FP if it admits a finite projective
resolution, that is, a projective resolution of finite type and finite length.

Exercise 70. Verify that a group G is of type FP if and only if G has finite
cohomological dimension and is of type FP∞. Hint: Theorem XXV and Exercise
67.

Note that, under the conditions of Exercise 70, Z has a finite projective resolution by Z[G]-
modules of length cd(G)),

0 −→ Pn −→ Fn−1 −→ · · · −→ F1 −→ F0 −→M −→ 0.

We may assume moreover that the modules Fi are free, but we may only assume that Pn is
projective.

7 (Virtual) duality groups

7.1 Bieri–Eckmann duality groups

The following concept is a generalization of Poincare duality in the context of group (co)homology.

Definition XXXIV. (Bieri–Eckmann duality groups). A group G of type FP is called a
(Bieri–Eckmann) duality group if there exists an integer n and a Z[G]-module D such that

H i(G;M) ∼= Hn−i(G;D ⊗Z M)

for all Z[G]-modules M and all integers i. Here, G acts diagonally on D ⊗Z M .

The following exercises show that D must in fact be the Z[G]-module Hn(G;Z[G]), where
n = cd(G).
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Exercise 71. (a) Review the definition of the groups H∗(G;Z[G]), and explain
why they admit a canonical right Z[G]-module structure.

(b) What is H∗(G;Z[G]) (homology instead of cohomology)?

Exercise* 72. Let G be a group of type FP . Then

cd(G) = max{n | Hn(G;Z[G]) 6= 0}.

Exercise 73. (a) Show that, for any left Z[G]-module M , there is a map

φ : H∗(G;Z[G])⊗Z[G] M −→ H∗(G;M)

defined on the level of cochains by mapping u⊗m (u ∈ HomZ[G](Pi,Z[G])),
m ∈M ) to the cochain x 7→ u(x)m in HomZ[G](Pi,M).

(b) Suppose that G is of type FP and n = cd(G). Prove

φ : Hn(G;Z[G])⊗Z[G] M
∼=−→ Hn(G;M)

is an isomorphism for all Z[G]-modules M .
Hint: View φ as a natural transformation of right-exact functors of M . See
Brown [Br, Proposition VIII.6.8].

(c) Justify the following restatement of this isomorphism. LetD = Hn(G;Z[G]).
Then

D ⊗Z[G] M ∼= (D ⊗Z M)G ∼= H0(G;D ⊗Z M)

so under the assumptions above

Hn(G;M) ∼= H0(G;D ⊗Z M).

Bieri–Eckmann proved the following equivalent characterizations of a duality group.

Theorem XXXV. Let G be a group of type FP . The following are equivalent.

(i) G is a duality group, that is, there exists an integer n and a Z[G]-module D such that

H i(G;M) ∼= Hn−i(G;D ⊗Z M)

for all Z[G]-modules M and all integers i.

(ii) There is an integer n such that H i(G,Z[G]⊗Z A) = 0 for all i 6= n and all abelian groups A.

(iii) There is an integer n such that H i(G,Z[G]) = 0 for all i 6= n and Hn(G,Z[G]) is a torsion-
free abelian group.
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(iv) There are natural isomorphisms

H i(G;−) ∼= Hn−i(G;D ⊗Z −)

where n = cd(G) and D = Hn(G,Z[G]), which are compatible with the connecting homo-
morphisms in homology and cohomology associated to a short exact sequence of modules.

Exercise* 74. Prove Theorem XXXV. Hint: See Brown [Br, Theorem VIII.10.1].

Exercise 75. Choose a group (such as Z) which has a K(G, 1) space equal to a
closed orientable manifold. Reconcile Theorem XXXV with conventional Poincaré
duality.

7.2 Duality groups over R

Definition XXXVI. (Duality groups over R). A group G of type FP is called a duality group
over a ring R if there exists an integer n and a (right) R[G]-module D such that

H i(G;M) ∼= Hn−i(G;D ⊗RM)

for all R[G]-modules M and all integers i. Here G acts diagonally on D ⊗RM .

Exercise 76. Show that if G is a duality group (over Z) with dualizing module
D, then it is a duality group over R with n = cd(G) and dualizing module
D ⊗Z R.

Exercise 77. Let G be a duality group over a ring R, with cd(G) = n. Show that
its dualizing module is

D ∼= Hn(G;R[G]).

Hint: See Bieri [Bi, p144, Claim (f)].

7.3 Virtual duality groups

Exercise 78. Let G be a torsion-free group and H a finite index subgroup. Show
that

• G is a duality group if and only if H is
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• IfG andH are duality groups they have the same dualizing module (under
restriction of scalars from Z[G] to Z[H]).

Hint: Show that the isomorphismH∗(H;Z[H]) ∼= H∗(G;Z[G]) implied by Shapiro’s
lemma is in fact an isomorphism of Z[H]-modules.

Definition XXXVII. (Virtual duality group). A group G is a virtual duality group if some
subgroup of finite index is a duality group.

We will see that, if G is a virtual duality group, then every torsion-free finite-index sub-
group is a duality group with dualizing module Hcd(G)(G;Z[G]).

Exercise 79. Use Shapiro’s lemma to prove the following proposition.

Proposition XXXVIII. A group G is virtual duality group if and only if the following two condi-
tions are satisfied

(a) G has a finite-index subgroup of type FP . (The group G is said to be of type V FP .)

(b) There is an integer n such that H i(G;Z[G]) = 0 for all i 6= n and Hn(G;Z[G]) is a torsion-
free abelian group.

In this case, every torsion-free subgroup of finite index is a duality group with dualizing module
Hn(G;Z[G]) .

Exercise* 80. Let G be a group without R-torsion, and let H be a finite-index
subgroup. Show that G is a duality group over R if and only if H is.
Hint: This is Bieri [Bi, Section 9.6, Theorem 9.9].

Exercise 81. Use Exercise 80 to prove the following proposition.

Proposition XXXIX. Let G be a virtual duality group. Then G is a duality group over Q. In
particular, for every i and every Q[G]-module V ,

Hvcd(G)−i(G;V ) ∼= Hi(G;D ⊗Q V )

where D ∼= Hvcd(G)(G;Q[G]) is the common rational dualizing module of G and its finite index
subgroups.
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