
The high-degree cohomology of SLn(R) Peter Patzt & Jenny Wilson

COGENT Summer School 2022

The high-degree rational cohomology of SLn(Z) and its
principal congruent subgroups

Peter Patzt & Jenny Wilson • June 2022

Abstracts

In Wilson’s 3-part lecture series we will survey some classical and recent results on the
high-degree rational cohomology of SLn(Z), or more generally SLn(R) when R is a num-
ber ring. These cohomology groups are governed by an SLn(R)-representation called the
Steinberg module. We will discuss how we can study the groups H∗(SLn(R);Q) by study-
ing the topology of certain simplicial complexes associated to the Steinberg modules.
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1 Patzt Lecture 1: Borel–Serre Duality

In this first lecture, we will introduce the main players of this lecture series, SLnZ and its
congruence subgroups. We proceed to look at their symmetric spaces that will help us com-
pute the group cohomology of the main players. We furthermore discuss the Borel–Serre
bordification that is necessary to prove the central method to analyze the high dimensional
cohomology of theses groups: Borel–Serre duality.

The main players: SLnZ shall denote the integer n × n matrices with determinant 1. Its
prime p level principal congruence subgroups are

Γn(p) := {A ∈ SLnZ | A ≡ In mod p}.

These groups are simultaneously the kernels of the mod p surjection

SLnZ −→ SLnFp.

Goal: In this lecture series, we will investigate H i(SLnZ;Q) and H i(Γn(p);Z) for i large.
We will see later in this lecture that these cohomology groups are zero if i >

(
n
2

)
. Therefore

“large” means that i is close below
(
n
2

)
.

Symmetric spaces: The main tool that allows us to study the group cohomology of SLnZ
and its congruence subgroups is its symmetric space. In particular, that is the quotient
space

Xn = SLnR/SO(n).

Here, we use the topology of SLnR as a subset of Rn2 and the quotient by collapsing the
cosets modulo SO(n) to points. This space is homeomorphic to the space of positive def-
inite symmetric real n × n matrices by sending the coset of a matrix A ∈ SLnR to the
symmetric matrix AAT . This space in fact is an

(
n(n+1)

2
− 1

)
-dimensional manifold.

Consider that action of SLnZ onXn by multiplication on the left. This action is properly
discontinuous but not free. As a matter of fact it has finite stabilizers. For example consider,
the stabilizer of the coset of the identity matrix In. It is SLnZ ∩ SO(n). But there are only
finitely many unit vectors in Zn that the standard basis could be sent to.

This observation shows that for all subgroups Γ ≤ SLnZ, we can compute rational
group cohomology with the symmetric spaces, as

H∗(Γ;Q) ∼= H∗(Xn/Γ;Q).

For torsion free subgroups Γ (for example Γn(p) with p > 2), we don’t have any stabilizers
anymore, so

H∗(Γ;Z) ∼= H∗(Xn/Γ;Z).
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Borel–Serre bordification: Both Xn and Xn/Γ are non-compact manifolds. Borel and Serre
constructed a bordification Xn such that Xn/Γ is a compact manifold with boundary (and
corners if considered differentially) if Γ is a finite index subgroup of SLnZ. This helps us
because we can apply Poincaré duality to Xn/Γ.

There are multiple ways to add boundary to Xn. The way that Borel and Serre did it
has multiple advantage for us. One is that the SLnZ action of Xn extends to an action on
Xn. The second is that Xn = Xn \ ∂Xn embeds into Xn as a homotopy equivalence, and so
does Xn/Γ into Xn/Γ if Γ is a finite index subgroup of SLnZ. In particular, we can compute
the group cohomology of Γ by

H∗(Γ;Q) ∼= H∗(Xn/Γ;Q) ∼= H∗(Xn/Γ;Q).

(And even integrally if Γ is torsion free.)
A neat way to construct Xn is actually as a subspace of Xn by removing slightly shrunk

horoballs. Let us look at this in the example of n = 2:
X2
∼= H2 the complex upper half plane (i.e. all z ∈ C with im z > 0). Such a homeomor-

phism is given by sending the coset of a matrix A =

(
a b
c d

)
∈ SL2R to

z =
ai+ b

ci+ d
=

(ai+ b)(−ci+ d)

c2 + d2
=

(ad− bc)i+ (ac+ bd)

c2 + d2
=
i+ (ac+ bd)

c2 + d2
.

Note that A ∈ SO(2) if and only if ac+ bd = 0 and c2 + d2 = 1 or equivalently z = i.
In Figure 1, horoballs are indicated. These are circles that touch the real line in the

rational numbers q ∈ Q and if q = a
b

with a, b ∈ Z fully reduced, they have diameter b2.
Additionally there is one horizontal line that goes through i. It should be though of as the
horoball touching infinity. One can observe that none of these circles intersect but a lot of
them touch. It is also true that SL2Z sends a horoball to another horoball.

If we now slightly decrease the radius of each circle but keep the attachment points
fixed and then remove their interior from H2, we get a connected manifold with boundary.
Note that this manifold is still contractible and non-compact.

Its boundary is a disjoint union of open intervals, one of each horoball, so one for every
rational number and one for infinity. This is homotopy equivalent to the discrete set Q ∪
{∞}which we can view as the set of lines in Q2 by sending

q ∈ Q 7−→
(
q
1

)
∞ 7−→

(
1
0

)
.

In general, the boundary ∂Xn is homotopy equivalent to the Tits building Tn(Q) that
we introduce next. Note that ∂Xn is not homeomorphic to the Tits building. One further
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Figure 1: Shinking Horoballs
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observes that ∂Xn/Γ is not homotopy equivalent to Tn(Q)/Γ. But this will not directly play
a role in this lecture series.

Tits building: Let F be a field. Tn(F ) is the simplicial complex that has nonzero proper
subspaces of F n as its vertices and every flag

0 ⫋ V0 ⫋ · · · ⫋ Vp ⫋ F n

forms a p-simplex.

Solomon–Tits: Tn(F ) is a wedge of (n − 2)-spheres. In particular, it only has reduced
homology in dimension n− 2.

Steinberg module: The Steinberg module is the free abelian group whose basis are the
(n− 2)-spheres: StnF := H̃n−2(Tn(F );Z). It comes with an action of SLnF on it.

Borel–Serre duality: This is the crucial tool that lets us access high dimensional cohomol-
ogy of SLnZ and its finite index subgroups. Let Γ be a finite index subgroup of SLnZ. Then
the following isomorphism is true.

H(n2)−i(Γ;Q⊗M) ∼= Hi(Γ;Q⊗M ⊗ StnQ)

This isomorphism holds even integrally if Γ is torsion free:

H(n2)−i(Γ;M) ∼= Hi(Γ;M ⊗ StnQ)

Corollary:

Hk(Γ;Q⊗M) ∼= 0 for k >
(
n

2

)
.

This statement can be generalized to other number rings. More about that in the next
lecture by Jenny.

General duality groups: A group G is called a (virtual) duality group of dimension ν with
dualizing module D if

Hν−i(G; (Q⊗)M) ∼= Hi(G; (Q⊗)M ⊗D)

for all G-modules and i ∈ N.
Observe that this implies that

H i(G; (Q⊗)M) ∼= 0

for all G-modules and i > ν.

5



The high-degree cohomology of SLn(R) Peter Patzt & Jenny Wilson

Bieri–Eckmann: G is a duality group of dimension ν if and only if

Hk(G;ZG) ∼= 0 for k ̸= ν

and
Hν(G;ZG) is free abelian.

G is a virtual duality group of dimension ν if and only if

Hk(G;QG) ∼= 0 for k ̸= ν.

Note that if G is a dualizing group of dimension ν, the dualizing module is uniquely
determined:

Hν(G;ZG) ∼= H0(G;ZG⊗D) = (ZG⊗D)G ∼= D

Proof of Borel–Serre duality: Let Γ be a finite index subgroup of SLnZ. For simplicity, we
assume that Γ is torsion free. (Otherwise rationalize all coefficients.)

We will apply the theorem of Bieri and Eckmann. We can compute

Hk(Γ;ZΓ) ∼= Hk(Xn/Γ;ZΓ)

using Poincaré duality and see that it is isomorphic to the relative homology

Hn(n+1)
2

−1−k
(Xn/Γ, ∂Xn/Γ;ZΓ).

Using a version of Shapiro’s lemma, this isomorphic to

Hn(n+1)
2

−1−k
(Xn, ∂Xn;Z)

which is isomorphic to
H̃n(n+1)

2
−1−k−1

(∂Xn;Z)

using the long exact sequence of a pair together with the fact that X̃n is contractible.
As we have noted above, ∂Xn is homotopy equivalent to the Tits building Tn(Q) and

thus only has reduced homology if

n(n+ 1)

2
− 1− k − 1 = n− 2

which is exactly when k =
(
n
2

)
.

It remains to prove that

Hk(Γ;ZΓ) ∼= H̃n−2(Tn(Q);Z) = StnQ
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is free abelian. This follows because Tn(Q) is (n − 2)-dimensional and thus StnQ is the
kernel of the map on simplicial chains

C̃n−2(Tn(Q)) −→ C̃n−3(Tn(Q)).

Church–Farb–Putman conjecture: Finally, we will state a conjecture about the high di-
mensional cohomology of SLnZ that the next four lectures will focus on:

H(n2)−i(SLnZ;Q) ∼= 0 for i ≤ n− 2.

2 Wilson Lecture 1: The Steinberg module, (integral) apart-
ment classes, and the top-degree cohomology of SLn(R)

Throughout this lecture, we will use the following notation.

• Let n be an integer, which we almost always assume to be at least 2.

• Let F denote a number field, that is, a finite field extension of Q.

• Let R denote the ring of integers in F , that is, the solutions in F to all monic polyno-
mials with coefficients in Z.

Exercise 1. Verify that F is the field of fractions of R.

Our goal is to say something about the cohomology of SLn(R). We are primarily in-
terested in the case that the number ring R ⊆ F is the integers Z ⊆ Q, but you may
also keep in mind examples like the Gaussian integers Z[i] ⊆ Q(i), the Eisenstein integers
Z[1

2
(−1 + i

√
3)] = Z[e2πi/6] ⊆ Q(

√
3), the cyclotomic integers Z[e2πi/d] ⊆ Q(e2πi/d), etc.

Virtual cohomological dimension

In this lecture series, we will assume the basic results on the cohomology of groups, includ-
ing the concepts of (virtual) cohomological dimension and Bieri–Eckmann duality. Although
we aim to blackbox the results we use, students are encouraged to look at the accompa-
nying review package on homological algebra and cohomology of groups for this back-
ground.

The results that Peter outlined in the first lecture all generalize from SLn(Z) to SLn(R).
Peter wrote ν to denote the virtual cohomological dimensions (vcd) of these groups, a value
computed for SLn(R) by Borel and Serre.
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Theorem 2.1 (Borel–Serre). Let R be a number ring with fraction field F . The virtual cohomo-
logical dimension (vcd) of SLn(R) is

vcdn(R) = r

(
n+ 1

2

)
+ cn2 − n− r − c+ 1

where

• r is the number of embeddings F ↪→ R

• c is the number of pairs of complex embeddings F ↪→ C that do not factor through R

This result implies, notably, that the vcd of SLn(R) is known; it is quadratic in n, and it
depends on the Galois theory of F . In particular, when R = Z, then the vcd is

(
n
2

)
.

Readers can refer to the review package on cohomology of groups for the definition
of virtual cohomological dimension of a group with torsion-free finite index subgroups.
For our purposes, crucially, this number has the property that it bounds the cohomological
dimension of SLn(R) with (possibly twisted) rational coefficients. In fact,

vcdn(R) = max{ q | Hq(SLn(R);V ) ̸= 0 for some Q[SLn(R)]-module V }.

Consider the cohomology of SLn(R) with (trivial, untwisted) coefficients in Q. Al-
though there is some rational SLn(R)-representation V such that Hvcdn(SLn(R);V ) ̸= 0,
the definition of vcd does not address the question of whether Hvcdn(SLn(R);Q) vanishes,
and in fact this question is open for many rings R.

The following problem is open for many number rings R, including even for R = Z,
and it is one of the motivating questions of this talk series.

Open Problem 2.2. Let R be a number ring. For each n, what is the largest value of q such that

Hq(SLn(R);Q) ̸= 0?

More generally, how does the answer to this problem depend on ring-theoretic properties of R?

Virtual Bieri–Eckmann duality

Recall from Peter’s lecture that (rationally) the groups SLn(R) satisfy a twisted analogue
of Poincaré duality, called virtual Bieri–Eckmann duality.

Theorem 2.3 (Borel–Serre). Let R be a number ring with fraction field F . Let V be a rational
SLn(R)-representation. There are, for each n, isomorphisms

Hvcdn−i(SLn(R);V ) ∼= Hi(SLn(R);V ⊗Z Stn(F ))

where Stn(F ) is the Steinberg module associated to SLn(R).
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We informally call Hvcdn−i(SLn(R);Q) the codimension-i cohomology of SLn(R). This re-
sult shows that, to study the high-degree rational cohomology of SLn(R), we can instead
study the low-degree homology, at the expense of working with twisted coefficients.

Recall that this theorem follows from work of Borel and Serre on the bordification of the
symmetric space associated to SLn(R). The Steinberg module Stn(F ) is defined in terms of
the Tits building Tn(F ), a simplicial complex we can identify (up to homotopy equivalence)
with the boundary of this bordification.

Definition 2.4. Fix a field F . The Tits building Tn(F ) is an abstract simplicial complex
defined as follows.

• Vertices V of Tn(F ) correspond to proper nonzero vector subspaces of F n.

• A collection of vertices {V0, . . . , Vp} span a p-simplex if and only if (possibly after
re-indexing) the subspaces form a flag

0 ⊊ V0 ⊊ · · · ⊊ Vp ⊊ F n.

In other words, Tn(F ) is the simplicial complex of chains in the poset of proper nonzero
subspaces of F n under inclusion.

Up to homotopy equivalence, the Tits building is a wedge of spheres. A guided (mod-
ern) proof of the following theorem is given in the exercises.

Theorem 2.5 (Solomon–Tits). Let F be a field. There is a homotopy equivalence Tn(F ) ≃
∨
Sn−2.

When F is a number field, this wedge consists of a countably infinite number of (n − 2)-
spheres.

Since SLn(R) acts on F n and its set of subspaces, and the action respects inclusion, there
is an induced simplicial action of SLn(R) on the Tits building. The Steinberg module Stn(F )
is defined to be the single nonvanishing reduced homology group of the Tits building
Tn(F ), viewed as a SLn(R)-representation.

Definition 2.6. Let F be a number field and R its ring of integers. The Steinberg module of
SLn(R) is the Z[SLn(R)]-module

Stn(F ) := H̃n−2(Tn;Z).

9



The high-degree cohomology of SLn(R) Peter Patzt & Jenny Wilson

Conjectures and known results high-degree rational cohomology of SLn(R)

Let R be a number ring and F its field of fractions. Consider the cohomology of SLn(R)
with trivial rational coefficients Q.

Goal 2.7. Study the cohomology groups Hq(SLn(R);Q) when q is close to the vcd.

In the case R = Z, Church–Farb–Putman [CFP1] conjectured that these high-degree
cohomology groups in fact vanish in a range close to the vcd.

Conjecture 2.8 (Church–Farb–Putman). Hvcdn−i(SLn(Z);Q) = 0 for all n ≥ i+ 2.

An aside: we may frame their conjecture as a form of stability that is in a sense dual to
the classical homological stability results for SLn(Z) due to Borel. They predict moreover
that the stable groups are zero.

It is natural to wonder whether these conjectures also hold for SLn(R) for other number
rings R. Some known results are summarized in the table below. These results give some
support (in low degree) for the Church–Farb–Putman conjecture, and illustrate how the be-
haviour of these cohomology groups varies depending on the ring-theoretical properties
of R. The analogue of the Church–Farb–Putman conjecture may hold for other Euclidean
number rings, but these results show that the conjectures cannot hold (without modifica-
tion) in general.

Top degree
q = vcdn

Lee–Szczarba [LS] R a Euclidean domain Hvcdn(SLn(R);Q) = 0 for all n ≥ 2
e.g. R = Z,Z[i]

Church–Farb–Putman [CFP2] R not a PID Hvcdn(SLn(R);Q) ̸= 0 for all n ≥ 2
e.g. R = Z[

√
−5]

Miller–Patzt–Wilson–Yasaki F = Q(
√
d) for Hvcd2n(SL2n(R);Q) ̸= 0 for all 2n ≥ 2

[MPWY] d = −43,−67,−163

Weinberger proved that, assuming the Generalized Riemann Hypothesis (GRH), the only
number rings that are PID but not Euclidean are the rings of integers in the quadratic
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number fields F = Q(
√
d) for d = −19,−43,−67,−163. Thus, assuming the GRH, the only

number ring not addressed in this table is the ring of integers in Q(
√
−19). In this case it is

known that Hvcd2(SL2(R);Q) = 0 (see Vogtmann [V, Table 7.1]), and the general question
is open. In all examples of non-Euclidean PID’s, the case of n odd is open in general.

Codimension 1
q = vcdn − 1

Church–Putman [CP] R = Z Hvcdn−1(SLn(Z);Q) = 0 for all n ≥ 3

Kupers–Miller–Patzt–Wilson R is the Gaussian or Hvcdn−1(SLn(R);Q) = 0 for all n ≥ 3
[KMPW] Eisenstein integers

Earlier this year the codimension-2 case of the Church–Farb–Putman conjectures was an-
nounced.

Codimension 2
q = vcdn − 2

Brück–Miller–Patzt–Sroka–Wilson [BMPSW] R = Z Hvcdn−2(SLn(Z);Q) = 0 for all n ≥ 4
(in fact for all n ≥ 3)

Higher-codimension cases of the Church–Farb–Putman Conjecture (Conjecture 2.8),
and the broader situation for other PIDs, are open problems. Kupers–Miller–Patzt–Wilson
[KMPW] showed that the approach to the proof that they and Church–Putman [CP] took
for the codimension 1 case provably will not work for all Euclidean domains. But, this
negative result does not disprove the vanishing of Hvcdn−1(SLn(R);Q) in these cases, so
new ideas are needed.
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A general approach to the Church–Farb–Putman conjectures

Consider cohomology with trivial coefficients Q. By virtual Bieri–Eckmann duality (Theo-
rem 2.3), there are isomorphisms

Hvcdn−i(SLn(R);Q) ∼= Hi(SLn(R); Stn(F )⊗Q).

This means, using general properties of group (co)homology, one strategy to compute
these groups is the following. (See the review package on group cohomology for details).

Recall here that, given a group G and G-representation V , the coinvariants VG are the
quotient group

V/⟨ v − g · v | v ∈ V, g ∈ G ⟩,

that is, VG is the largest G-equivariant quotient of V with trivial G-action.

To compute Hvcdn−i(SLn(R);Q) ∼= Hi(SLn(R); Stn(F )⊗Q) :

• Find a resolution of Q⊗Z Stn(F ) by flat Q[SLn(R)]-modules

. . . −→ V1 −→ V0 −→ Q⊗Z Stn(F ) −→ 0

• Take SLn(R)-coinvariants

. . . −→ (V1)SLn(R) −→ (V0)SLn(R) −→ 0

• Take homology of this resulting chain complex. Its ith homology group is isomorphic
to Hvcdn−i(SLn(R);Q).

Thus, an approach to our Goal 2.7 is to attempt to compute a flat resolution of Q ⊗Z
Stn(F ) by SLn(R)-representations that are ’nice’ enough that we have a hope of under-
standing their coinvariants.

When R is a Euclidean domain, a construction of one flat resolution, the Sharbly res-
olution due to Lee–Szczarba [LS], is outlined in the exercises. They used this resolution
to prove Hvcdn(SLn(R);Q) vanishes for R Euclidean. Unfortunately it appears that this
resolution is “too big” to compute Hvcdn−i(SLn(R);Q) for i > 0.

Today’s goal: vanishing of Hvcdn(SLn(R);Q) for R Euclidean

Assume that our number ringR is a Euclidean domain. For example,R could be Z,Z[i],Z[
√
2], . . .

12
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The goal of today’s talk is to give a proof of Lee–Szczarba’s result that Hvcdn(SLn(R);Q)
vanishes for all n ≥ 2. Our proof is anachronistic—we will use a result of Ash–Rudolph
[AR] (to be proved in the next lectures) that is more recent than Lee–Szczarba [LS].

By Bieri–Eckmann duality (Theorem 2.3),

Hvcdn(SLn(R);Q) ∼= H0(SLn(R); Stn(F )⊗Q)
∼= (Stn(F )⊗Q)SLn(R)

Our strategy: to find generators of Stn(F )⊗Q that we can show vanish in SLn(R)-coinvariants.

Warm-up: The case n = 2

When n = 2, the Tits building is a discrete set

T2(F ) = {lines in F 2}.

Thus the Steinberg module is the representation

St2(F ) = H̃0(T2(F )) ∼= ⟨ L1 − L2 | Li ⊆ F 2 a line ⟩.

Let’s specialize to the case R = Z. What can we say about the SL2(Z)-coinvariants of
St2(Q)? Remember: our goal is to show these coinvariants vanish, which implies

Hvcd2(SL2(Z);Q) = 0.

Consider the generator x = Q
[
1
0

]
−Q

[
0
1

]
. Now, consider the matrix

g =

[
0 −1
1 0

]
∈ SL2(Z).

The matrix g interchanges the two coordinate axes, so g · x = −x. Conclusion: x vanishes
in coinvariants.

That was promising! Is it possible that we can use the same trick for each of our generators
L1 − L2 of St2(F )?

Unfortunately not. Next consider the generator y = Q
[
1
0

]
−Q

[
2
3

]
.

Exercise 2. (a) Verify that there is no element g ∈ SL2(Z) that interchanges the lines

Q
[
1
0

]
and Q

[
2
3

]
.
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(b) Explain why the reason we can’t adapt the trick we used for x = Q
[
1
0

]
−Q

[
0
1

]
is that

(
Q
[
1
0

]
∩ Z2

)
⊕
(
Q
[
2
3

]
∩ Z2

)
̸= Z2.

In this case, the Z-module generators
[
1
0

]
for

(
Q
[
1
0

]
∩ Z2

)
and

[
2
3

]
for

(
Q
[
2
3

]
∩ Z2

)
do not form a basis for Z2 but instead span an index-3 subgroup.

The crux of our proof that the coinvariants St2(Q)SL2(Z) vanish is the claim that St2(Q)
is in fact generated by the subset of generators L1 − L2 with good integrality properties,
the generators for which it is possible to find a matrix g as above. In general, when R is
Euclidean,

St2(R) = ⟨ L1 − L2 | Li ⊆ F 2 a line, (L1 ∩R)⊕ (L2 ∩R) = R2 ⟩.

In other words, for each generator L1 − L2 we can write L1 = Fv1 and L2 = Fv2 for some
basis v1, v2 of R2.

Exercise 3. Write

Q
[
1
0

]
−Q

[
2
3

]
=

(
Q
[
1
0

]
−Q

[
1
1

])
+

(
Q
[
1
1

]
−Q

[
2
3

])
.

Show that this class vanishes in coinvariants.

We will now see that this strategy generalizes to all n ≥ 2.

(Integral) apartment classes and the Ash–Rudolph theorem

Definition 2.9. A frame for F n is a direct sum decomposition into lines

F n = L1 ⊕ L2 ⊕ · · · ⊕ Ln

Given such a frame, let S(L1, L2, . . . , Ln) denote the simplicial subcomplex of Tn spanned
by the vertices corresponding all direct sums of all nonempty proper subsets of the lines
{L1, L2, . . . , Ln}. The subcomplex S(L1, L2, . . . , Ln) is called an apartment.

The apartment S(L1, L2, L3) corresponding to a frame of F 3 is shown below.

14



The high-degree cohomology of SLn(R) Peter Patzt & Jenny Wilson

Exercise 4. (a) Show that we can identify an apartment S(L1, L2, . . . , Ln), as a simplicial
complex, with the barycentric subdivision of the boundary of an (n − 1)-simplex.
Conclude in particular that there is a homeomorphism S(L1, L2, . . . , Ln) ∼= Sn−2.

(b) Show that a choice of order on the lines (L1, L2, . . . , Ln) induces a choice of orientation
on the sphere S(L1, L2, . . . , Ln) ∼= Sn−2. Deduce that for each choice of order (up to
even permutations) we obtain a choice of fundamental class of S(L1, L2, . . . , Ln) in
degree-(n− 2) homology with a well-defined sign.

Definition 2.10. Let F n = L1 ⊕ L2 ⊕ · · · ⊕ Ln be a frame for F n (ordered up to even per-
mutations) and let S(L1, L2, . . . , Ln) be the associated apartment in Tn. Then the image of
the fundamental class of the sphere S(L1, L2, . . . , Ln) in Stn(F ) = H̃n−2(Tn(F )), denoted
[S(L1, L2, . . . , Ln)], is called an apartment class.

Theorem 2.11 (Solomon–Tits). The Steinberg module Stn(F ) is generated by apartment classes
for all n ≥ 2.

We do not expect, however, for the apartment classes to form a basis for Stn(F ).

Definition 2.12. Let R be a domain and F its field of fractions. A frame F n = L1 ⊕ L2 ⊕
· · · ⊕ Ln for F n is called integral if

(L1 ∩Rn)⊕ (L2 ∩Rn)⊕ · · · ⊕ (Ln ∩Rn) = Rn.

Equivalently, if we chose a generator vi for (Li ∩ Rn) for all i, then the frame is integral if
and only if the elements {v1, . . . , vn} form an R-basis for Rn. If F n = L1 ⊕ L2 ⊕ · · · ⊕ Ln is
an integral frame, then the apartment S(L1, L2, . . . , Ln) is called an integral apartment and
[S(L1, L2, . . . , Ln)] an integral apartment class.

Theorem 2.13 (Ash–Rudolph [AR]). Let R be a Euclidean domain and F its field of fractions.
Then the Steinberg module Stn(F ) is generated by integral apartment classes for all n ≥ 2.

A proof of Lee–Szczarba assuming Ash–Rudolph

We can now prove that, if R is a Euclidean domain, then Hvcdn(SLn(R);Q) vanishes. Let F
be the fraction field of R.
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Recall that it suffices to show that the coinvariants Stn(F )SLn(R) of the Steinberg module
vanish. Since (by Ash–Rudolph’s theorem) the Steinberg module is generated by integral
apartment classes, it suffices to show that each integral apartment class is zero in the coin-
variants. We do this in the following exercise.

Exercise 5. (a) Let F n = L1 ⊕ L2 ⊕ · · · ⊕ Ln be an integral frame. Show there exists an
element g ∈ SLn(R) such that

g · L1 = L2

g · L2 = L1

g · Li = Li for all i ≥ 3.

(b) Verify that the action of g on Tn(F ) stabilizes and reverses the orientation on the
apartment S(L1, L2, . . . , Ln). In the case n = 3, the reflection induced by g is illus-
trated below.

Deduce that
g · [S(L1, L2, . . . , Ln)] = −[S(L1, L2, . . . , Ln)].

(c) Deduce that the apartment class [S(L1, L2, . . . , Ln)] vanishes in SLn(R)-coinvariants.

(d) Conclude that, when R is a Euclidean domain, Hvcdn(SLn(R);Q) = 0 for all n ≥ 2.

3 Wilson Lecture 2: High connectivity of the partial basis
complex implies the Ash–Rudolph theorem

Let’s begin with a summary of the key points from the previous lecture.

Let R be the ring of integers in a number ring F .

16
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• Virtual Bieri–Eckmann duality

Hvcdn−i(SLn(R);Q) ∼= Hi(SLn(R);Q⊗ Stn(F ))

with dualizing module the Steinberg module

Stn(F ) = H̃n−2(Tn(F ))

defined via the Tits building Tn(F )

vertices ←→ subspaces 0 ⊊ V ⊊ F n

p-simplices ←→ flags 0 ⊊ V0 ⊊ V1 ⊊ · · · ⊊ Vp ⊊ F n

• Solomon–Tits theorem
Tn(F ) ≃

∨
Sn−2

Stn(F ) = H̃n−2(Tn(F )) is generated by apartment classes

apartments ←→ frames F n = L1 ⊕ L2 ⊕ . . .⊕ Ln

S(L1, L2, . . . , Ln) =
full subcomplex of Tn(F ) on vertices
corresponding to direct sums of the lines Li.

≃ Sn−2

• Ash–Rudolph theorem

When R is Euclidean, Stn(F ) is generated by integral apartment classes,
i.e., [S(L1, L2, . . . , Ln)] such that (L1 ∩Rn)⊕ (L2 ∩Rn)⊕ · · · ⊕ (Ln ∩Rn) = Rn.

• Lee–Szczarba theorem

When R is Euclidean, Hvcdn(SLn(R);Q) = 0 for all n ≥ 2.

Last Time: Ash–Rudolph =⇒ Lee–Szczarba.

Today: Proof of Ash–Rudolph.

The goal for today’s lecture is to prove Ash–Rudolph’s theorem on the generation of the
Steinberg module by integral apartment classes, assuming some intermediate results we
will return to in the next lecture. We will give a simplified proof of Ash–Rudolph due to
Church–Farb–Putman [CFP2].
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Some methods in simplicial complexes

Simplicial complexes, simplices, and links

Recall that a simplicial complexX is the union of a set of simplices subject to the conditions
that (1) every face of a simplex in X is a simplex, and (2) the intersection σ1∩σ2 of any two
simplices in X is either empty or is a single face of both σ1 and σ2. These definitions are
quite restrictive (compared to, say, the definition of a CW complex or even a ∆-complex)
but they do mean that simplicial complexes can be neatly characterized combinatorially.
Given a simplicial complexX , every p-simplex has (p+1) distinct vertices. Moreover, every
nonempty subset of vertices of X can span either zero or one simplex. Thus the complex
X is completely determined by the data of its vertex set, and the collection of subsets of
vertices that span simplices.

For a simplicial complex X , we write σ = [s0, s1, . . . , sp] for the p-simplex spanned
by the vertices {s0, s1, . . . , sp}. By abuse of notation, when convenient, we also use the
notation [s0, s1, . . . , sp] to encode an ordering on the vertices of the simplex, and understand
the simplex σ to come with an orientation.

Definition 3.1. Let X be a simplicial complex, and σ = [s0, s1, . . . , sp] a p-simplex in X . The
link of σ in X is

LinkX(σ) =
subcomplex of X consisting of the simplices
{[t0, t1, . . . , tq] | [s0, s1, . . . , sp, t0, t1, . . . tq] is a simplex in X}

In other words, to find the link of σ, we consider all simplices containing σ as a face, and
then take the union of all faces opposite σ.

Some simplices (blue) and their links (pink) are shown below. This image is modified
from Wikipedia.

Connectivity

Recall the following convention from algebraic topology:
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• all topological spaces are (−2)-connnected

• a space X is called (−1)-connected if and only if it is nonempty

• a space X is called 0-connected if and only if it is path-connected

• a spaceX is called 1-connected if and only if it is simply connected (i.e. path-connected
with trivial fundamental group)

• in general, for d ≥ 0, a spaceX is d-connected if and only if πi(X) = 0 for all 0 ≤ i ≤ d.

By the Hurewicz theorem, if a space X is d-connected, then H̃i(X) = 0 for all −1 ≤ i ≤ d.

The Cohen–Macaulay property

With the terminology above, we can make the following definition.

Definition 3.2. Let X be a d-dimensional simplicial complex. Then X is called Cohen–
Macaulay (CM) if

• X is (d− 1)-connected

• LinkX(σ) is (d− 2− dim(σ))-connected for all simplices σ in X .

We may call X CM of dimension d to emphasize its dimension. By convention we say the
empty set is CM of dimension −1.

This condition ensures that X is not only highly connected—at least as connected as a
d-sphere—but has a ’nice’ simplicial structure. For example, X might be the disk or sphere
with a standard simplicial structure. This condition is often used in the topological stability
literature to run inductive arguments, say, to prove that a family of simplicial complexes
are increasingly highly connected.

Exercise 6. (a) Verify that the standard n-simplex is CM.

(b) Verify that the boundary of the standard n-simplex is CM. What about the k-skeleton?

(c) Verify that the following simplicial complexes is not CM, even though it is con-
tractible. Conclude that high connectivity of a complex alone does not guarantee
the CM property.
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(d) Show by example that a subcomplex of a CM complex need not be CM.

A warning—there is an earlier, inequivalent, definition of CM in the literature. The
original definition only gave a condition on the homology of the links, and not the homo-
topy groups. That version was a homeomorphism invariant. The version stated here, due
to Quillen, is not; it depends on the simplicial structure.

Joins

The following concept and result will be useful in proving the CM property.

Definition 3.3. The join of simplicial complexes X and Y is a simplicial complex, denoted
X ∗ Y , defined as follows. Its vertex set is the disjoint union the vertices of X and Y . A
subset of the vertex set spans a simplex if and only if it is the disjoint union of a (possibly
empty) simplex inX and a (possibly empty) simplex in Y , viewed as subsets of their vertex
sets.

Topologically, the join of spaces X and Y is homeomorphic to the quotient of X×Y × [0, 1]
collapsing X × Y × {0} to X and X × Y × {1} to Y .

Exercise 7. Verify that LinkLinkX(σ)(τ) = LinkX(σ ∗ τ).

See (for example) Milnor [Mi, Lemma 2.3] for a proof of the following.

Lemma 3.4. Let X0, X1, . . .Xn be a collection of (n+ 1) nonempty spaces. Then the join

X0 ∗X1 ∗ · · · ∗Xn

is (n− 1)-connected. More generally, if Xi is (di− 1)-connected for all i, then the join is (d0+d1+
· · ·+ dn + n− 1)-connected.

Barycentric subdivision

Finally, we recall that the barycentric subdivision of a simplicial complexX (sometimes writ-
ten sd(X)) is the simplicial complex obtained from X by placing a new vertex in the centre
of mass (the barycentre) of each simplex in X , and subdividing each simplex accordingly.
A p-simplex in sd(X) corresponds to a flag of (p+1)-simplices (under inclusion) in X . This
operation changes the simplicial structure but not the homeomorphism type of X .

The following image, showing the barycentric subdivision of a 2-simplex, was taken
from Wikipedia.
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The complex of partial bases and a theorem of Maazen

Fix a Euclidean domain R and let F be its field of fractions.

Definition 3.5. A set of vectors v0, . . . , vp in Rn is called a partial basis if it is a subset of a
basis (or is a basis).

Exercise 8. (a) A vector {v0} ⊆ Rn is a partial basis if and only if v0 is primitive, i.e., its
entries generate R.

(b) The sets


10
0

 ,
12
0

 and


 1

1
−1

 ,
 1
−1
−1

 are not partial bases of Z3.

Definition 3.6. Fix a Euclidean ringR. We define an (n−1)-dimensional simplicial complex
PBn(R), called the complex of partial bases, as follows.

• Vertices of PBn(R) are primitive vectors in Rn.

• A collection of vertices {v0, . . . , vp} span a p-simplex if and only if they are a partial
basis.

We will sometimes consider instead the barycentric subdivision of PBn(R). This com-
plex has a vertex for each partial basis of Rn, and simplices correspond to flags of partial
bases. In other words, the barycentric subdivision is the simplicial complex associated to
the poset of partial bases of Rn under inclusion.

Exercise 9. Choose a finite field R and sketch PBn(R) for some small values of n.

To prove Ash–Rudolph, we will use the following result of Maazen (see [Ma, Theorem
4.2]), which Maazen originally used to prove homological stability for the rings GLn(R).
We will outline a proof of this theorem in the next lecture.

Theorem 3.7 (Maazen [Ma]). Let R be a Euclidean domain. The barycentric subdivision of
PBn(R) is CM.

Our goal is to relate the Tits building to PBn(R), in order to obtain a nice generating set
for its homology. The key to this strategy is the following lemma of Quillen.
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Quillen’s lemma

Definition 3.8. Given a poset A, let |A| denote the associated simplicial complex (called its
geometric realization). The vertices of |A| are elements of A, and its simplices correspond to
flags.

Exercise 10. Let A be a simplicial complex. Let A be the poset of simplices of A under in-
clusion, and let |A| be its geometric realization. Show that |A| is the barycentric subdivision
of A. Conclude in particular that |A| and A are homeomorphic as topological spaces.

Exercise 11. (a) Let A be a poset, and let a ∈ A. Show that the link of {a} is the join

|A<a| ∗ |A>a|

of the geometric realizations of the subposets

A<a = {a′ ∈ A | a′ < a} and A>a = {a′ ∈ A | a′ > a}.

(b) Given a chain a0 < a1 < · · · < ap in A, what is the link of the simplex [a0, a1, . . . , ap]
in |A|?

Definition 3.9. For an element a in a poset A, the height h(a) of a is the largest p such that
there exists a chain a0 < a1 < . . . < ap = a in A.

Lemma 3.10 (Quillen [Q, Theorem 9.1 and Corollary 9.7]). Let f : A→ B be a map of posets.
Assume

• The map f is strictly increasing, i.e., a < a′ =⇒ f(a) < f(a′).

• |B| is CM of dimension d

• For all b ∈ B, the geometric realization |fb| of the “downward fibre”

fb := {a ∈ A | f(a) ≤ b} ⊆ A

is CM of dimension h(b). (Note fb is sometimes denoted f≤b.)

Then |A| is CM, and f∗ : H̃d(|A|)→ H̃d(|B|) surjects.
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The proof of Ash–Rudolph

We now have the necessary ingredients to prove Ash–Rudolph’s theorem on the genera-
tion of Stn(F ) by integral apartment classes.

Let B be the poset of proper nonzero summands of F n under inclusion, and A be the poset
of proper partial bases of Rn under inclusion.

Exercise 12. Verify that the geometric realization |B| is the Tits building Tn(F ), and |A| is
the barycentric subdivision of the (n− 2)-skeleton of the partial bases complex PBn(R).

Consider the map of posets

f : A −→ B

{v0, . . . vp} 7−→ spanF{v0, . . . vp}

In the following exercise, we will check that the hypotheses of Quillen’s Lemma (Lemma
3.10) holds for f .

Exercise 13. (a) Verify that f is strictly increasing.

(b) Verify that |B| = Tn(F ) is CM of dimension (n− 2).
Hint: Use Exercise 11, Lemma 3.4, and the Solomon–Tits theorem. Relate B<V to the
Tits building on the F -vector space V , and B>V to the Tits building on the F -vector
space F n/V . What can you say about the subposet {W ∈ B | U ⊊ W ⊊ V } for fixed
U, V ?

(c) For all V ∈ F n, verify that fV is the complex of partial bases on V . Conclude that |fV |
is CM of the appropriate dimension.

It then follows from Lemma 3.10 that we have a surjection

f∗ : H̃n−2(|A|) −→ H̃n−2(Tn(F )) = Stn(F ).

To conclude the proof, we will show that the integral apartment classes are the image of a
generating set for H̃n−2(|A|).

Since PBn(R) is (n− 2)-connected, we might expect that the degree-(n− 2) homology
of its (n − 2)-skeleton be generated by the boundaries of the (n − 1)-simplices “missing”
from the (n − 2)-skeleton. We will confirm this intuition using the long exact sequence of
a pair.

Once we do this, we are done: the (n − 1)-simplices in PBn(R) correspond to bases of
Rn, and the images of their (subdivided) boundaries are precisely the integral apartments
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in Tn(F ), as sketched below. Then, using the Quillen Lemma, we conclude that integral
apartment classes generate Stn(F ) = H̃n−2(Tn(F )).

So consider the pair (PBn(R), |A|). From the associated long exact sequence, we have
an exact sequence

Hn−1(PBn(R), |A|)
(∗)−→ H̃n−2(|A|) −→ H̃n−2(PBn(R))

By Maazen’s high-connectivity result for PBn(R) (Theorem 3.7), the third term vanishes,
so the connecting homomophism (∗) must surject, and we have a surjective map

Hn−1(PBn(R), |A|)↠ H̃n−2(|A|)
f∗
↠ H̃n−2(Tn(F )) = Stn(F ).

But (using the original simplicial structure on PBn(R), viewing the topological space |A|
as its codimension-1 skeleton, and working with simplicial homology) we can identify the
relative homology group Hn−1(PBn(R), |A|) with the group of simplicial (n− 1)-chains on
PBn(R), in other words, the free abelian group on bases for Rn. The connecting homo-
morphism takes an (n− 1)-chain to its boundary. We conclude that Stn(F ) is generated by
integral apartment classes, and complete the proof.

Summary of today’s results

Recall R is a Euclidean domain and F its field of fractions.

• We proved Ash–Rudolph’s theorem, which states that when R is Euclidean, the
Steinerg module Stn(F ) is generated by integral apartment classes, i.e., [S(L1, L2, . . . , Ln)]
where the frame L1, L2, . . . , Ln arises from a basis of Rn (not just F n).

• We proved the result by constructing a surjection H̃n−2(|A|) → Stn(F ), where the
space |A| is the (n− 2)-skeleton of the complex of partial bases PBn(R).
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• We proved this map surjects using a lemma of Quillen on maps of posets. To apply
the lemma we used the Solomon–Tits theorem (the Tits building Tn(F ) is CM of
dimension (n − 2)) and a theorem of Maazen (the complex of partial bases PBn(R)
is CM of dimension (n− 1)).

• We used Maazen’s theorem a second time to argue that the (surjective) image of the
map H̃n−2(|A|)→ Stn(F ) is generated by integral apartment classes.

Tomorrow: We will give a proof of Maazen’s result. This will complete the argument

Maazen =⇒ Ash–Rudolph =⇒ Lee–Szczarba,

where Lee–Szczarba states Hvcdn(SLn(R);Q) = 0 for R Euclidean and all n ≥ 2.

4 Wilson Lecture 3: The complex of partial bases is highly
connected

Let’s begin with a summary of the key points from the previous lecture.

Let R be the ring of integers in a number field F .

• Virtual Bieri–Eckmann duality

Hvcdn−i(SLn(R);Q) ∼= Hi(SLn(R);Q⊗ Stn(F ))

with dualizing module the Steinberg module

Stn(F ) = H̃n−2(Tn(F ))

defined via the Tits building Tn(F )

vertices ←→ subspaces 0 ⊊ V ⊊ F n

p-simplices ←→ flags 0 ⊊ V0 ⊊ V1 ⊊ · · · ⊊ Vp ⊊ F n

• Solomon–Tits theorem
Tn(F ) ≃

∨
Sn−2
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Stn(F ) = H̃n−2(Tn(F )) is generated by apartment classes

apartments ←→ frames F n = L1 ⊕ L2 ⊕ . . .⊕ Ln

S(L1, L2, . . . , Ln) =
full subcomplex of Tn(F ) on vertices
corresponding to direct sums of the lines Li.

≃ Sn−2

• Church–Farb–Putman conjectures

Conjecturally, Hvcdn−i(SLn(Z);Q) = 0 for all n ≥ i+ 2.

• Lee–Szczarba theorem

When R is Euclidean, Hvcdn(SLn(R);Q) = 0 for all n ≥ 2.

• Ash–Rudolph theorem

When R is Euclidean, Stn(F ) is generated by integral apartment classes,
i.e., [S(L1, L2, . . . , Ln)] such that (L1 ∩Rn)⊕ (L2 ∩Rn)⊕ · · · ⊕ (Ln ∩Rn) = Rn.

• The the complex of partial bases PBn(R)

vertices ←→ primitive vectors v ∈ Rn

p-simplices ←→ partial bases {v0, v1, . . . , vp} for Rn

Maazen theorem

When R is Euclidean, sd(PBn(R)) is CM of dimension (n− 1).
i.e., PBn(R) and its links are as highly connected as a standard (n− 1)-sphere

Wilson Lecture 1: Ash–Rudolph =⇒ Lee–Szczarba.

Wilson Lecture 2: Maazen =⇒ Ash–Rudolph.

Today: Proof of Maazen

The goal for today’s lecture is to prove Maazen’s result that the complex of partial bases
PBn(R) is CM of dimension (n− 1) when R is Euclidean. This will complete our proof of
Ash–Rudolph’s theorem, and, in particular, the codimension-0 case of the Church–Farb–
Putman vanishing conjecture on the high-degree cohomology of SLn(Z).
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We will use a proof due to Church–Putman [CP]. This approach will showcase some
of the methods (in a warm-up setting) used by Church–Putman [CP] and Brück–Miller–
Patzt–Sroka–Wilson [BMPSW] to prove the codimension-1 and codimension-2 case of the
Church–Farb–Putman conjectures.

For simplicity we will specialize to the case R = Z, though emphasize when we use its
Euclidean property. It is left as an exercise to the reader to adapt the arguments to general
Euclidean rings.

Exercise 14. Explain how to generalize the following proof from R = Z to a arbitrary
Euclidean ring R. Verify that the arguments hold in this generality.

Today’s goal and proof outline

Let R = Z. Write PBn for PBn(Z).

Definition 4.1. Let e1, . . . , ek be the standard basis for Zk. Following Church–Putman, we
adopt the notation

PBm
n := LinkPBn+m({e1, e2, . . . , em}).

By convention PB0
n = PBn, the link of the empty simplex.

This definition says that PBm
n is the subcomplex spanned of PBm+n of simplices {v1, . . . vp}

such that {e1, e2, . . . , em, v1, . . . , vp} is a partial basis for Zm+n. In other words, it is the com-
plex of partial bases of direct complements to Zm = Ze1 ⊕ · · · ⊕ Zem ⊆ Zm+n.

Exercise 15. Verify the following.

(a) PBm
0 is empty.

(b) The complex PBm
n has dimension (n− 1) for all m ≥ 0.

Use the convention that the empty set has dimension −1.

Our goal for this lecture is to prove the following theorem.

Theorem 4.2. For all m,n ≥ 0, PBm
n is CM of dimension (n− 1).

When m = 0, this is Maazen’s result, our stated goal for today’s lecture.
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Proof strategy

Our goal is to prove that PBm
n is CM of dimension (n− 1) for all m,n ≥ 0. This means we

must check, for all m,n ≥ 0,

▶ PBm
n is (n− 1)-dimensional. This is Exercise 15.

▶ PBm
n is (n− 2)-connected.

▶ For any simplex σ ∈ PBm
n the link LinkPBm

n
(σ) is (n− dim(σ)− 3)-connected.

We will use the following approach.

• We proceed by induction on n. For each n ≥ 0, we assume PBm′

n′ is CM of dimension
(n′ − 1) for all m′ ≥ 0 and n′ < n.

• Fix m and consider PBm
n . We will identify the links of (nonempty) simplices in PBm

n

with complexes PBm′

n′ for n′ < n. Thus the connectivity of the links follows from
the induction hypothesis. Our goal is to prove PBm

n is (n − 2)-connected, that is,
πp(PB

m
n ) = 0 for 0 ≤ p ≤ (n− 2).

• Fix 0 ≤ p ≤ (n− 2) and consider a continuous map

ϕ : Sp −→ PBm
n

from a p-sphere. We wish to show ϕ is nullhomotopic, so πp(PB
m
n ) = 0. We can

assume (by the Simplicial Approximation Theorem) that ϕ is a simplicial map with
respect to some simplicial structure on Sp. Since Sp is compact, this structure has
finitely many simplices.

• We will define a function R = Rϕ on the vertices x of Sp to Z≥0 that we view as a
measure of the ‘badness’ of the image ϕ(x). This function R is defined so that, if we
can homotope ϕ to reduceR to zero at every vertex, the resultant map will be demon-
strably nullhomotopic.

Our goal becomes the following: Let N = maxx∈Sp R(x). We will show that we can
homotope ϕ to reduce the R-value of (at least one) vertex in Sp with R-value N ,
without creating any new vertices of R-value equal to N or greater. We are then
done by induction. This style of high-connectivity argument is sometimes called a
“badness argument”.

• To remove ‘bad’ vertices from ϕ(Sp) we homotope the map ϕ to “push” the image
ϕ(x) into its link. To ensure we can do this without introducing new ‘bad’ vertices,
we must study the subcomplexes of the links in PBm

n with small badness-values.
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Links in PBm
n

The following lemma, which describes links in PBm
n , is left as an exercise.

Lemma 4.3. Given a simplex σ in PBn
m, there is an isomorphism of simplicial complexes

LinkPBm
n
(σ) ∼= PB

m+dim(σ)+1
n−dim(σ)−1 .

Exercise 16. Verify that LinkPBm
n
(σ) ∼= PB

m+dim(σ)+1
n−dim(σ)−1 .

Hint: Let σ = {v1, . . . vq}. Verify that a “change of basis” transformation of Zn+m induces a
simplicial automorphism of PBn+m.

Beginning the proof of Theorem 4.2

Proof of Theorem 4.2. We will prove PBm
n is CM of dimension (n − 1) for all m,n ≥ 0. We

proceed by induction on n.

The base case was addressed in Exercise 15: when n = 0, PBm
0 is the link of a maximal-

dimensional simplex and therefore is empty. Thus PBm
0 is CM of dimension −1 for all m.

Fix n ≥ 0. Assume by induction that PBm′

n′ is CM of dimension (n′−1) for all 0 ≤ n′ < n
and all m′ ≥ 0. Our goal is to prove PBm

n is CM of dimension (n− 1). We already know

• PBm
n is dimension (n− 1) (Exercise 15).

• For all simplices σ ∈ PBm
n ,

LinkPBm
n
(σ) ∼= PB

m+dim(σ)+1
n−dim(σ)−1

by Lemma 4.3. This complex is CM of dimension (n − dim(σ) − 2) by the inductive
hypothesis. In particular it is (n− dim(σ)− 3)-connected, as required.

It remains to show that PBm
n is (n− 2)-connected.

Fix 0 ≤ p ≤ (n− 2), and let
ϕ : Sp −→ PBm

n

be a map from a p-sphere. After possibly modifying ϕ up to homotopy, we can assume this
map is simplicial with respect to some simplicial structure on Sp. In fact, it is a (not entirely
trivial) result from PL topology that we can assume that Sp is a combinatorial p-sphere; the
links of its simplices are simplicial spheres. Our goal is to show that ϕ is nullhomotopic.
We will proceed by a ’badness argument’ as outlined in the proof summary above.
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Define the following function on the vertices of PBm
n . Recall that a vertex is a primitive

element in Zm+n, which we may view as an (m+ n)-vector.

F : {vertices of PBm
n } −→ Z≥0

v 7−→ |(m+ n)th coordinate of v|

Now we can define, associated to the map ϕ, our ‘badness’ function R = Rϕ

Rϕ : {vertices of Sp} −→ Z≥0

x 7−→ F (ϕ(x))

Let Rmax = maxx∈Sp R(x). Our goal is to homotope ϕ so that Rmax = 0. The following
exercise shows that the resulting map is nullhomotopic.

Exercise 17. Suppose that Rϕ(x) = 0 for all x ∈ Sp.

(a) Show that the image of ϕ is in the link of vertex en+m of PBm
n .

(b) Conclude that we can homotope ϕ to the constant map at the point en+m.

We will show that, if Rmax = N > 0, then we can homotope ϕ to reduce R(x) for some
vertex x with R(x) = N , without raising the R-value of any other vertices to N . This will
complete the proof.

Assume Rmax = N > 0. Let τ be a simplex in Sp of maximal dimension having the
property that R(x) = N for all x ∈ τ . There could be more than one such simplex; it is
enough to show we can resolve one of them. Our strategy is to homotope ϕ to ‘push’ the
image of τ off the simplex ϕ(τ) and into the link of ϕ(τ). To ensure we can do this in a way
that reduces R-values of τ , we need to study the subcomplex of the links of simplices in
PBm

n of small F -values.

The subcomplexes LinkPBm
n
(σ)<N

Recall that F is the ’absolute value of the last coordinate’ function on vectors in Zm+n.

Definition 4.4. Fix N ≥ 0 in Z. For a subcomplex X of PBm
n , we use the notation X<N to

denote the subcomplex of X spanned by vertices v ∈ X satisfying F (v) < N .

Lemma 4.5. Let σ be a simplex in PBm
n , and suppose w is a vertex of σ such that F (w) = N > 0.

Then there exists a retraction π = πσ,w

π : LinkPBm
n
(σ) −→ LinkPBm

n
(σ)<N .
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We will construct π as a simplicial map. This means we will first define it on vertices.
Then, to show it is a well-defined, continuous map, we only need to check that for every
collection of vertices in the domain LinkPBm

n
(σ) that span a simplex, their image under π

span a simplex.

Define

π : LinkPBm
n
(σ) −→ LinkPBm

n
(σ)<N

v 7−→ v − qw

where q ∈ Z is determined by the Euclidean algorithm: it is the quotient of the last coordi-
nate of v on division by the last coordinate of w.

For example, suppose w =

 6
1
10

 and v =

 2
5
43

. When we apply the Euclidean algo-

rithm to the last coordinates, we find 43 = 4(10) + 3, with quotient q = 4. Then

π(v) = v − 4w =

 2
5
43

− 4

 6
1
10

 =

−221
3

 .
In this example, the remainder 3 < R = 10 as desired.

We will verify that π is the desired retraction in the following exercise.

Exercise 18. (a) Suppose that {e1, . . . , em, w1, . . . , wk, v1, . . . , vℓ} is a partial basis for Zm+n.
Explain why, for any w ∈ {w1, . . . , wk} and integers q1, . . . , qℓ, the set

{e1, . . . , em, w1, . . . , wk, v1 − q1w, . . . , vℓ − qℓw}

is a partial basis for Zm+n. In particular the elements vi − qiw are primitive.

(b) Deduce that π(v) is an element of LinkPBm
n
(σ) for all v ∈ LinkPBm

n
(σ).

(c) Explain why in fact π(v) ∈ LinkPBm
n
(σ)<N . Conclude that π is well-defined on ver-

tices.

(d) Again use part (a) to deduce that π extends over simplices. Concretely: if {v1, . . . , vℓ}
spans a simplex in LinkPBm

n
(σ), show that {π(v1), . . . , π(vℓ)} spans a simplex in LinkPBm

n
(σ)<N .

Conclude that π is a well-defined simplicial map.

(e) Verify that π fixes LinkPBm
n
(σ)<N pointwise. Conclude that π is a retraction, as claimed.

The key to executing our ‘badness’ argument is the following result.
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Corollary 4.6. Let σ be a simplex in PBm
n . Assume LinkPBm

n
(σ) is (n − dim(σ) − 3)-connected

(as implied by our inductive hypothesis in the proof of Theorem 4.2). Then LinkPBm
n
(σ)<R is also

(n− dim(σ)− 3)-connected.

We prove this corollary in the following exercise.

Exercise 19. (a) Suppose that π : X → Y is a retraction of topological spaces. Explain
why π induces surjective maps on homotopy groups.

(b) Deduce Corollary 4.6 from Lemma 4.5. That is, show that if LinkPBm
n
(σ) is (n −

dim(σ)− 3)-connected, then so is LinkPBm
n
(σ)<R, using the existence of a retraction

LinkPBm
n
(σ)→ LinkPBm

n
(σ)<R.

Resuming the proof of Theorem 4.2

Recall that we had a map ϕ : Sp → PBm
n with associated badness measure R(x) = F (ϕ(x))

on vertices of Sp, and total badness Rmax = maxx∈Sp R(x) = N > 0. Our goal is to homo-
tope ϕ to reduce Rmax. Call a simplex in Sp bad if every vertex has maximally-bad R-value
N . We had selected a maximal-dimensional bad simplex τ in Sp. To complete the proof,
we will homotope ϕ to reduce the R-values of the vertices of τ , without increasing the R-
values of any vertices to N .

Suppose that dim(τ) = k. Let dim(ϕ(τ)) = ℓ. The map ϕ|τ may or may not be injective,
but we know ℓ ≤ k.

By construction of our simplicial structure on Sp, we know LinkSp(τ) ∼= Sp−k−1. By our
assumption that τ was maximal-dimensional, we know R(x) < N for any x ∈ LinkSp(τ),
which implies ϕ(x) /∈ ϕ(τ). Thus

ϕ(LinkSp(τ)) ⊆ LinkPBm
n
(ϕ(τ)).

In fact, since R(x) < N , we know

ϕ(LinkSp(τ)) ⊆ LinkPBm
n
(ϕ(τ))<N .

But LinkSp(τ) ∼= Sp−k−1 and (by Corollary 4.6) our inductive hypothesis implies that
LinkPBm

n
(ϕ(τ))<N is (n− ℓ− 3)-connected. By the following exercise, then, the image of the

sphere LinkSp(τ) in LinkPBm
n
(ϕ(τ))<N is nullhomotopic.

Exercise 20. Verify that p− k − 1 ≤ n− ℓ− 3. Conclude that ϕ|LinkSp (τ) is nullhomotopic in
LinkPBm

n
(ϕ(τ))<N .
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This means that the image of the sphere LinkSp(τ) bounds a (p−k)-disk in LinkPBm
n
(ϕ(τ))<N .

In fact, using more results from PL topology, we can deduce that there exists a combinato-
rial (p− k)-disk D—a simplicial disk whose links are spheres—with ∂D ∼= LinkSp(τ), and a
simplicial map ψ : D → LinkPBm

n
(ϕ(τ))<N that restricts to ϕ|LinkSp (τ) on the boundary of D.

See Church–Putman [CP, Proof of Theorem 4.2] for more PL topology details.

We claim that we can homotope ϕ to replace ϕ on the p-disk τ ∗ LinkSp(τ) ⊆ Sp with
a new map defined using ψ, while fixing ϕ on on the boundary and the complement of
the disk τ ∗ LinkSp(τ). The homotopy will be continuous but may not be simplicial. We
typically need to alter the simplicial structure on Sp to make the new map simplicial, but
this is acceptable as long we do not introduce new maximal-dimensional bad simplices.

The following figures illustrate this procedure. The first figure shows a case in which
τ is a vertex. In this sequence, the image of τ ∗ LinkSp(τ) (shaded yellow) is replaced (via
the homotopy) by the disk shaded blue. The formerly-bad vertex τ now maps to a vertex
in LinkPBm

n
(ϕ(τ))<N .

The next figure shows a case in which τ is an edge. Note in this case the homotopy does not
change the image of any vertex. The image of τ ∗ LinkSp(τ) (shown in yellow) is replaced
(via our homotopy) by the four triangles shaded blue shown in final panel. However, we
have modified the simplicial structure on τ ∗LinkSp(τ) so that the two bad simplices ∂τ are
no longer joined by an edge.
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We can formalize this argument as follows. Consider the map from the (p+ 1)-ball

ϕ|τ ∗ ψ : τ ∗D −→ PBm
n .

The boundary of this (p+ 1)-ball is a p-sphere that we can write as the union

∂(τ ∗D) = (τ ∗ ∂D) ∪∂τ∗∂D (∂τ ∗D).

The map (ϕ|τ ∗ ψ) restricts on (τ ∗ ∂D) ∼= (τ ∗ LinkSp(τ)) to ϕ|τ∗LinkSp (τ).

Thus the map (ϕ|τ ∗ ψ) defines a homotopy from ϕ|τ∗LinkSp (τ) to (ϕ|∂τ ∗ ψ).

This homotopy fixes the values of ϕ on

∂(τ ∗ LinkSp(τ)) = ∂τ ∗ LinkSp(τ) ∼= ∂τ ∗ ∂D

and so we can extend it to fix ϕ on the rest of Sp pointwise.

Exercise 21. Verify that a simplex τ has the same vertex set as its boundary ∂τ unless τ is
a point, in which case ∂τ = ∅.

At this point Sp may have the same number of bad vertices, but (on the subcomplex
τ ∗LinkSp(τ) where we performed the homotopy) the maximal-dimensional bad simplices
now have dimension strictly less than τ did. Specifically, since ψ maps every vertex of D
to LinkPBm

n
(ϕ(τ))<N , the maximal-dimensional bad simplices in ∂τ ∗D are the faces of τ . If

dim(τ) = 0, then ∂τ = ∅ and the procedure modifies the map ϕ to have a strictly smaller
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R-value on the vertex τ .

Thus, by iterating this procedure, we can eventually homotope ϕ to have R-value
strictly less than N on every vertex in the disk τ ∗ LinkSp(τ). Repeating this procedure
for other maximal-dimensional bad simplex will lower Rmax, and by induction we can
reduce Rmax to 0 and conclude the proof.

Exercise 22. Church–Putman did not actually prove this result for the complex PBn(R) of
partial bases. Instead, they proved it for a closely related complex, the complex of partial
frames Bn(R). Vertices of Bn(R) are lines in Rn. It may be convenient to write a line as
an equivalence class of primtive vectors v, defined up to multiplication by a unit. A set
of lines span a simplex if they are a subset of a frame, equivalently, if their associated
primitive vectors are a partial basis. Adapt the arguments from this lecture to prove that
Bn(R) is CM of dimension (n− 1).

5 Patzt Lecture 2: Codimension 1 cohomology of SLnZ
In this lecture, we want to understand the structure of Church–Putman’s proof that

H(n2)−1(SLnZ;Q) ∼= 0 for n ≥ 3.

This result can be used to prove that K8(Z) ∼= 0, a recent result by Dutour Sikirić–Elbaz-
Vincent–Kupers–Martinet.

We will start with a presentation of the Steinberg module, then argue how this presen-
tation implies the result. Afterwards, we give a sketch of how to derive the presentation.

The Bykovskii presentation: As we have seen in Jenny’s lectures, StnQ is generated by
integral apartments classes, which are [S(L1, . . . , Ln)] ∈ H̃n−2(Tn(Q)) for a line decompo-
sition L1 ⊕ · · · ⊕ Ln = Zn. Some relations between such apartment classes are easy to see
and have been covered in the exercises:

[S(L1, . . . , Ln)] = (−1)π · [S(Lπ(1), . . . , Lπ(n))] for all permutations π ∈ Sn.

There is one more relation that is less obvious—the Manin relation:

[S(L1, L2, L3, . . . , Ln)] = [S(L0, L2, L3, . . . , Ln)] + [S(L1, L0, L3, . . . , Ln)],

where L0 is generated by v1 + v2 with L1 = Zv1 and L2 = Zv2.
We will describe this presentation in another way.

Some simplicial complexes: Recall that Bn(Z) is the complex of partial frames. An aug-
mented frame is a set of lines {L0, . . . , Ln} such that (after reordering) L1⊕· · ·⊕Ln = Zn (i.e.
is a frame) and L0 is generated by v1 + v2 with L1 = Zv1 and L2 = Zv2.
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BAn(Z) is the simplicial complex whose vertices are lines in Zn and whose simplices
are subsets of augmented frames. Here is a picture for n = 2.

Z
(
0
1

)

Z
(
1
0

)

Z
(
1
1

)
Z
(

1
−1

)

Z
(
1
2

)

Z
(
2
1

)

Z
(

1
−2

)

Z
(

2
−1

)

Note that SLnZ acts on BAn(Z) and thus Cn(BAn(Z)) is a SLnZ-module.

Exercise 23. (hard) Show that Cn(BAn(Z);Q) and Cn−1(Bn(Z);Q) are projective SLnZ-
modules. (Hint: Consider the stabilizer subgroup of an n-simplex in BAn(Z).)

We will see a little later that

Cn(BAn(Z)) −→ Cn−1(Bn(Z))
[L0, . . . , Ln] 7−→ [L1, . . . , Ln]− [L0, L2, . . . , Ln] + [L0, L1, L3, . . . , Ln]

is SLnZ-equivariant.

The Bykovskii presentation rephrased: By sending [L1, . . . , Ln] ∈ Cn−1(Bn(Z)) to the in-
tegral apartment class [S(L1, . . . , Ln)] ∈ StnQ, we get a sequence

Cn(BAn(Z)) −→ Cn−1(Bn(Z)) −→ StnQ −→ 0.

The Bykovskii presentation given above is equivalent to the statement that this sequence is
exact. To see this, note that the relations that come from permuting the apartment are the
same as those permuting the (n− 1)-simplex in Bn(Z), and the left most map gives exactly
the Manin relation.
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Proof of Church–Putman: We start with the partial projective resolution

Cn(BAn(Z);Q) −→ Cn−1(Bn(Z);Q) −→ Q⊗ StnQ −→ 0

given by the Bykovskii presentation. To show that

H(n2)−1(SLnZ;Q) ∼= 0 for n ≥ 3,

it suffices to show that
Cn(BAn(Z);Q)SLnZ

∼= 0 for n ≥ 3.

We know that Cn(BAn(Z);Q) is freely generated by augmented frames [L0, . . . , Ln].
Assume that Li = Zvi and v0 = v1 + v2. If n ≥ 3, we can find a g ∈ SLnZ that swaps v1
and v2, sends vn to −vn and fixes all other vi. This matrix g will then fix v1 + v2, and act on
[L0, . . . , Ln] by flipping its orientation. It is therefore zero in coinvariants.

Proof of the Bykovskii presentation: For this we will use the result that

BAn(Z) is (n− 1)-connected,

which is hard and technical, and was proved by Church–Putman. (Similar to Ash-Rudolph,
Bykovskii did not originally use simplicial complexes.)

LetBA′
n(Z) be the subcomplex ofBAn(Z) of simplices [L0, . . . , Lk] such that L0+· · ·+Lk

is a proper summand of Zn. This implies that the (n− 2)-skeleton of both complexes is the
same (as n − 1 lines can never span Zn). The only simplices in C∗(BAn(Z), BA′

n(Z)) are
frames and augmented frames. That means:

Ck(BAn(Z), BA′
n(Z)) ∼=


Cn(BAn(Z)) if k = n

Cn−1(Bn(Z)) if k = n− 1

0 if n ̸= n, n− 1

Furthermore, the differential

Cn(BAn(Z), BA′
n(Z)) −→ Cn−1(BAn(Z), BA′

n(Z))

is given by

∂[L0, . . . , Ln] = [L1, . . . , Ln]− [L0, L2, . . . , Ln] + [L0, L1, L3, . . . , Ln]

because
[L0, L1, L2, . . . , L̂i, . . . , Ln] ∈ Cn(BA

′
n(Z))

for i ≥ 3.
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Thus Bykovskii gives a presentation of Hn−1(BAn(Z), BA′
n(Z)). Or in other words, it

suffices to show that
Hn−1(BAn(Z), BA′

n(Z)) ∼= Stn(Q).

To do this, we will use three isomorphisms:

Hn−1(BAn(Z), BA′
n(Z))→ H̃n−2(BA

′
n(Z))→ H̃n−2(sdBA

′
n(Z))→ H̃n−2(Tn(Q)) = Stn(Q)

The first of these isomorphisms is the boundary map in the long exact sequence

0 = H̃n−1(BAn(Z))→ Hn−1(BAn(Z), BA′
n(Z))→ H̃n−2(BA

′
n(Z))→ H̃n−2(BAn(Z)) = 0.

The second isomorphism simply reflects that the barycentric subdivision of a simplicial
complex is homeomorphic to the original complex.

The third isomorphism is more complicated. Here, every vertex in sdBA′
n(Z) is given

by a simplex in BA′
n(Z), i.e. [L0, . . . , Lk] such that L0 + · · · + Lk ̸= Zn. We will send this

vertex to Q(L0 + · · · + Lk), which is a vertex in Tn(Q). It is easy to check that this gives a
simplicial map. It remains to check that this map induces an isomorphism on H̃n−2.

This can be done by a lemma of Quillen (similar to Jenny’s talk) or directly by looking
at the map-of-poset spectral sequence, which we will need in the next lecture anyway. For
this we will use the homology of posets with coefficient functors. We will not go into the
definition of this here but instead just point out that the homology of a poset with constant
coefficients is the same as the homology of the simplicial complex of chains in that poset.
For more details on the map-of-poset spectral sequence, please see the appendix.

Let X be the poset of simplices in BA′
n(Z) and let Y be the poset of proper nonzero

subspaces of Qn ordered by inclusion. Let

f : X −→ Y

[L0, . . . , Lk] 7−→ Q(L0 + · · ·+ Lk)

be the span map, which is clearly a map of posets. Let V be a proper nonzero subspace of
Qn, then the poset fiber f≤V is defined as

f≤V = {[L0, . . . , Lk] | Q(L0 + · · ·+ Lk) ⊆ V }.

It is easy to see that f≤V is isomorphic to the poset of simplices in BAdimV (Z) and thus

H̃∗(f≤V ) ∼= H̃∗(BAdimV (Z)).

The (reduced) map-of-poset spectral sequence is given by

E2
pq = Hp(Y ;V 7→ H̃q(f≤V )) =⇒ Hp+q+1(cone(f)).

38



The high-degree cohomology of SLn(R) Peter Patzt & Jenny Wilson

As stated above
H̃q(f≤V ) ∼= H̃q(BAdimV (Z)).

In particular, this vanishes unless the dimension of V is q. For functors that are supported
on an antichain, a lemma of Charney says that

Hp(Y ;V 7→ H̃q(f≤V )) ∼=
⊕

dimV=q

H̃p−1(Y>V )⊗ H̃q(f≤V ),

where Y>V is the poset of all proper subspaces of Qn that are strictly including V . It is not
hard to see that this is isomorphic to the poset of proper nonzero subspaces of Qn/V ∼=
Qn−dimV . Therefore

H̃p−1(Y>V ) ∼= 0 unless p− 1 = (n− dimV )− 2

or equivalently unless p+ q + 1 = n. This means that

Hp+q+1(cone(f)) ∼= 0 unless p+ q + 1 = n.

From the long exact sequence, we get that

H̃k(X) −→ H̃k(Y ) is an isomorphism for k ≤ n− 2.

This proves the third isomorphism.

6 Patzt Lecture 3: Codimension 0 cohomology of Γn(p)

Goal: What is H(n2)(Γn(p);Z)?

First idea: From Borel–Serre duality we know

H(n2)(Γn(p);Z) ∼= H0(Γn(p); Stn(Q)) ∼= Stn(Q)Γn(p).

Bykovskii’s presentation of Steinberg is

Cn(BAn(Z), BA′
n(Z) −→ Cn−1(BAn(Z), BA′

n(Z)) −→ Stn(Q) −→ 0.

Because taking coinvariants is right exact, we have presentation of the coinvariants of
Steinberg

Cn(BAn(Z), BA′
n(Z))Γn(p) −→ Cn−1(BAn(Z), BA′

n(Z))Γn(p) −→ Stn(Q)Γn(p) −→ 0.
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And even more,

C∗(BAn(Z), BA′
n(Z))Γn(p)

∼= C∗(BAn(Z)/Γn(p), BA
′
n(Z)/Γn(p)),

where BAn(Z)/Γn(p) and BA′
n(Z)/Γn(p) are finite simplicial complexes.

So does that mean we are done? Maybe not. For example, what are the dimensions?

Another idea: Consider the map

Tn(Q) −→ Tn(Q)/Γn(p).

This induces map

Stn(Q) = H̃n−2(Tn(Q)) −→ H̃n−2(Tn(Q)/Γn(p))

that factors through
Stn(Q)Γn(p) −→ H̃n−2(Tn(Q)/Γn(p))

because the above map is Γn(p)-equivariant with the trivial action of H̃n−2(Tn(Q)/Γn(p)).
(This is also finite simplicial complex homotopy equivalent to a wedge of (n− 2)-spheres.)

What can we say about this map?

Miller–P–Putman: For p ≥ 3 a prime,

H(n2)(Γn(p);Z) −→ H̃n−2(Tn(Q)/Γn(p))

is always surjective.
For p ≤ 5, it is injective.
For p ≥ 7 (and n ≥ 2), it is not injective.

Computations: H̃n−2(Tn(Q)/Γn(p)) is a free abelian group and its dimension is very com-
putational. Below is a list of all dimensions for p = 5 and n ≤ 15. The numbers in the table
were computed in one second. I have computed the dimensions for p = 5 and n ≤ 200 in
less than one minute on a personal computer.
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n dimH(n2)(Γn(5))
1 1
2 11
3 621
4 176331
5 250654141
6 1781972405051
7 63346001119010061
8 11259312615761079960171
9 10006344346503001479394156381

10 44464067922769996760030750509009691
11 987899991107026778582667588995859270541101
12 109745515200463561297438405787408294210000904481611
13 60957982865169441101378571385234702783255341037103258372221
14 169295103797089744818524470008237065225058191012577153712309414663931
15 2350867829470159774034814041007591566603522538519291648712545382850352884817741

Case n = 2: BΓ2(p) is the modular curve of this congruence subgroup. That means it is a
orientable connected surface. For p ≥ 3, it is known that it has genus

(p+ 2)(p− 3)(p− 5)

24

and it is easy to see that its punctures are in bijection to T2(Q)/Γ2(p). In particular, that
means

H1(Γ2(p);Z) ∼= Z
(p+2)(p−3)(p−5)

12 ⊕ H̃0(T2(Q)/Γ2(p)).

The theorem is evident from this.

Connectivity result: We prove that BAn(Z)/Γn(p) is

• (n− 2)-connected for all primes p, and even

• (n− 1)-connected for primes p ≤ 5.

Proof of surjectivity: Because

Ci(BAn(Z)/Γn(p), BA
′
n(Z)/Γn(p)) ∼= 0 for i ≤ n− 2,

the initial observations show that

Hn−1(BAn(Z)/Γn(p), BA
′
n(Z)/Γn(p)) ∼= Stn(Q)Γn(p).
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Using the long exact sequence of a pair, we get that the boundary map

Hn−1(BAn(Z)/Γn(p), BA
′
n(Z)/Γn(p)) −→ H̃n−2(BA

′
n(Z)/Γn(p))

is surjective because
H̃n−2(BAn(Z)/Γn(p)) ∼= 0.

Now again, we can replace the homology of BA′
n(Z)/Γn(p) with the isomorphic homology

of the poset of simplices. In the last step, we consider the span map

H̃n−2(sdBA
′
n(Z)/Γn(p)) −→ H̃n−2(Tn(Z)/Γn(p)).

One can prove that this is surjective with a map-of-poset spectral sequence argument,
which we will discuss later.

Proof of injectivity for p ≤ 5: We consider the same maps as in the surjectivity proof:

Hn−1(BAn(Z)/Γn(p), BA
′
n(Z)/Γn(p)) −→ H̃n−2(BA

′
n(Z)/Γn(p))

∼= H̃n−2(sdBA
′
n(Z)/Γn(p)) −→ H̃n−2(Tn(Z)/Γn(p)).

For the first map, the long exact sequence of a pair shows it is an isomorphism as

H̃n−2(BAn(Z)/Γn(p)) ∼= H̃n−1(BAn(Z)/Γn(p)) ∼= 0 for primes p ≤ 5.

Then last map can now be proved to be an isomorphism with a map-of-poset spectral
sequence argument, which we will also discuss later.

Proof of non-injectivity for p ≥ 7: To prove this part of the theorem, we will show that the
span map

H̃n−2(sdBA
′
n(Z)/Γn(p)) −→ H̃n−2(Tn(Z)/Γn(p))

is not injective. This will again be done by a map-of-poset spectral sequence argument.

Description of BAn(Z)/Γn(p) and Tn(Z)/Γn(p): Before we get to the map-of-poset spectral
sequence argument, we will have to understand the simplicial complexes BAn(Z)/Γn(p)
and Tn(Z)/Γn(p) a little better. Both of these are almost versions of BAn and Tn for Fp,
except that all matrices in Γn(p) have determinant 1 and Fp (usually) has more units than
Z.

To be precise, BAn(Z)/Γn(p) is (isomorphic to) a simplicial complex whose vertices are
nonzero vectors in Fn

p up to multiplying by −1. We write such an equivalence class of
vectors as ±v for some vector v ∈ Fn

p . The simplices are the subsets of set {±v0, . . . ,±vn}
such that the matrix built from v1, . . . , vn has determinant ±1 and v0 = v1 + v2 (for some
choices).
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Tn(Q)/Γn(p) is the simplicial complex of chains in the following poset. This poset is
given by elements (V, ω), where V is a nonzero, proper subspace of Fn

p , and

ω ∈
(∧dimV

V

)
/±1 ∼= F×/±1.

The ordering in this poset is just given by inclusion, independent of the ω.

The map-of-poset spectral sequence argument:
Let X be the poset of simplices in BA′

n(Z)/Γn(p) and let Y be the poset associated to
Tn(Q)/Γn(p) from above. Let

f : X −→ Y

[v0, . . . , vk] 7−→ (V, ω) = (Fp · v0 + · · ·+ Fp · vk, v0 ∧ · · · ∧ vk)

be the span map, which is clearly a map of posets. Let V be a proper nonzero subspace of
Fn
p and ω ∈

(∧dimV V
)
/±1, then the poset fiber f≤(V,ω) is defined as

f≤V = {[v0, . . . , vk] | Fp · v0 + · · ·+ Fp · vk ⊆ V and v0 ∧ · · · ∧ vk = ω if the span is all of V }.

Now, one can see that f≤V is isomorphic to the poset of simplices in BAdimV (Z)/ΓdimV (p)
and thus

H̃∗(f≤V ) ∼= H̃∗(BAdimV (Z)/ΓdimV (p)).

The (reduced) map-of-poset spectral sequence is given by

E2
pq = Hp(Y ;V 7→ H̃q(f≤V )) =⇒ Hp+q+1(f).

Differently than in the previous lecture,

H̃q(f≤V ) ∼= H̃q(BAdimV (Z)/ΓdimV (p))

might be nonzero when the dimension of V is q or q + 1. Therefore we will have to split
this functor up into two:

0 −→ Aq(V ) −→ H̃q(f≤V ) −→ Bq(V ) −→ 0,

where

Aq(V ) =

{
H̃q(f≤V ) if dimV = q,
0 otherwise

and

Bq(V ) =

{
H̃q(f≤V ) if dimV = q + 1,
0 otherwise.
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Using the lemma of Charney, we get

Hp(Y ;Aq) ∼=
⊕

dimV=q

H̃p−1(Y>V ; H̃q(f≤V ))

and
Hp(Y ;Bq) ∼=

⊕
dimV=q+1

H̃p−1(Y>V ; H̃q(f≤V )).

Here Y>V is isomorpic to Tn−dimV (Q)/Γn−dimV (p). Therefore

H̃p−1(Y>V ) ∼= 0 unless p− 1 = (n− dimV )− 2.

This means that
Hp(Y ;Aq) ∼= 0 unless p+ q = n− 1

and
Hp(Y ;Bq) ∼= 0 unless p+ q = n− 2.

Using the long exact sequence we now get

E2
pq =


Hp(Y ;Aq) for p+ q = n− 1,
Hp(Y ;Bq) for p+ q = n− 2,
0 otherwise.

We can deduce that

Hp+q+1(f) ∼= 0 unless p+ q + 1 ∈ {n, n− 1}.

From the long exact sequence, we get that

H̃k(X) −→ H̃k(Y ) is an isomorphism for k ≤ n− 3

and
H̃n−2(X) −→ H̃n−2(Y ) is surjective.

This proves the surjection part of the theorem.
Now, assuming p ≤ 5, Bq = 0, so we get

H̃k(X) −→ H̃k(Y ) is an isomorphism for k ≤ n− 2.

This proves the injection part of the theorem for p ≤ 5.
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Assuming p ≥ 7 and get non-injectivity, we have to take a closer look at the spectral
sequence. We want to prove that E∞

n−3,1 ̸= 0. This would follow from E2
n−3,1 ̸= 0 and

E2
n−1,0 = 0. We already saw that

E2
n−3,1

∼= Hn−3(Y ;B1) ∼=
⊕

dimV=2

H̃n−4(Tn−2(Q)/Γn−2(p))⊗ H̃1(BA2(Z)/Γ2(p)),

which is nonzero for p ≥ 7. And we can also find that

E2
n−1,0

∼= Hn−1(Y ;A0) ∼= 0

because Y has only dimension n− 2 (or alternatively A0
∼= H̃0(∅)) ∼= 0).

This implies that Hn−1(f) ̸= 0 and the long exact sequence

0 = H̃n−1(Y ) −→ Hn−1(f) −→ H̃n−2(X) −→ H̃n−2(Y ) −→ . . .

shows that the map

H̃n−2(sdBA
′
n(Z)/Γn(p)) ∼= H̃n−2(X) −→ H̃n−2(Y ) ∼= H̃n−2(Tn(Z)/Γn(p))

is not injective for p ≥ 7.

7 Further directions and open problems

The topic of high dimensional cohomology arithmetic groups has 4 obvious directions in
which one can go. The following cases are already known.

Codimension: We covered the Church–Farb–Putman conjecture

H(n2)−i(SLnZ;Q) ∼= 0 for i ≤ n− 2

in the codimensions i ≤ 1 as theorems of Lee–Szczarba and Church–Putman. For i = 2, the
conjecture has recently also been proven correct by Brück–Miller–P–Sroka–W. The cases
i ≥ 3 are open and will either require more significantly more computer calculations or
new ideas.

Rings: In codimension i = 0, we actually know

Hvcdn(SLnOK ;Q) ∼= 0 for n ≥ 2

for all number ringsOK that are Euclidean by Lee–Szczarba. For number rings that are not
PIDs, Church–Farb–Putman showed that

dimHvcdn(SLnOK ;Q) ≥ (|cl(OK)| − 1)n−1.
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Assuming the Generalized Riemann Hypothesis, there are only four number rings OK

that are PIDs but not Euclidean: K = Q[
√
−19],Q[

√
−43],Q[

√
−67],Q[

√
−163]. Miller–P–

W–Yasaki proved that
Hvcd2n(SL2nOK ;Q) ̸= 0 for 2n ≥ 2

for the three latter rings. The odd n cases andK = Q[
√
−19] are still open. (Hvcd2(SL2OK ;Q) ∼=

0 for K = Q[
√
−19].)

Combing the directions of codimension and rings very little is known: Kupers–Miller–
P–W proved in codimension 1 that

Hvcdn−1(SLnOK ;Q) = 0 for n ≥ 3

for OK being the Gaussian and the Eisenstein integers.

Subgroups: Only the prime level congruence subgroups of SLnZ have been considered so
far. Lee–Szczarba proved that

Hvcdn(Γn(3);Z) ∼= StnF3.

Miller–P–Putman extended a generalization of this result

Hvcdn(Γn(p);Z) ∼= H̃n−2(Tn(Q)/Γn(p);Z)

to the primes p ≤ 5 and disproved it for primes p ≥ 7. In Miller–P–Putman, a lower bound
for p ≥ 7 is given. This lower bound since has been improved by Schwermer.

Generally, it is not hard to see that

IndGLn+1(Fp)

GLn(Fp)
Hvcdn(Γn(p);Z) −→ Hvcdn+1(Γn+1(p);Z)

is a surjection. Miller–Nagpal–P consider this also statement also in codimension i = 1
and prove it for p = 3:

IndGLn+1(F3)
GLn(F3)

Hvcdn−1(Γn(3);Z) −→ Hvcdn+1−1(Γn+1(3);Z)

is a surjection. This uses that
Hvcdn(Γn(3);Z) ∼= StnF3

in a critical way.

Arithmetic groups: Other than SLn, one can of course also consider other arithmetic
groups. So far only the symplectic groups Sp2nZ have been considered. Building on a
result of Gunnells, it is easy to observe that

Hvcdn(Sp2nOK ;Q) ∼= 0 for n ≥ 1
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for all Euclidean number rings OK .
Brück–P–Sroka have work-in-progress on the codimension i = 1 case

Hvcdn−1(Sp2nZ;Q) ∼= 0 for n ≥ 2.

Open problems
All other combinations of directions are still open. Although a statement about all

congruence subgroups of all arithmetic groups over all number rings in all codimensions
would be desirable, that seems in no way feasible or unifiable. The most interesting open
problems that seem at least somewhat achievable (albeit with new ideas) are:

• The Church–Farb–Putman conjecture

H(n2)−i(SLnZ;Q) ∼= 0 for i ≤ n− 2

in all codimensions i. (Potentially even for all Euclidean number rings instead of
only Z.)

• The symplectic version of the Church–Farb–Putman conjecture

Hvcdn−i(Sp2nZ;Q) ∼= 0 for i ≤ n− 1

in all codimensions i. (Potentially even for all Euclidean number rings instead of
only Z.)

• Calculating
Hvcdn(SLnOK ;Q)

when OK is not Euclidean. (Here we don’t even have a conjecture. Except for maybe
the four number rings that are PIDs but not Euclidean. More about that in a little bit.)

• Calculating
Hvcdn(Γn(p);Q)

for all primes p ≥ 7.

More tractable ideas would be the following:

• Let OK be a Euclidean number ring. Define BPn(OK) to be the simplicial complex
whose vertices are 1- and 2-dimensional summands ofOn

K and top-dimensional sim-
plices are given by {P,L1, . . . , Ln}, where

On
K = L1 ⊕ · · · ⊕ Ln and P = L1 ⊕ L2.

If one could prove that BPn(OK) is (n− 1)-connected for n ≥ 2, it would show that

Hvcdn−1(SLnOK ;Q) ∼= 0 for n ≥ 3.
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• Let OK be a one of the four number rings mentioned above that are PIDs but not
number rings. If one could prove that BPn(OK) is (n − 2)-connected for n ≥ 3, one
would be able to calculate

Hvcdn(SLnOK ;Q).

• What other congruence subgroups Γ2 ≤ SL2Z have a modular curve with genus 0?
Is there a way to naturally build a sequence

Γ2 ≤ Γ3 ≤ Γ4 ≤ . . .

with Γn ≤ SLnZ such that

H(n2)(Γn;Q) ∼= H̃n−2(Tn(Q)/Γn;Q)

or one at least gets a surjection?

• Using the Bykovskii presentation of Steinberg for the Gaussian integers and the
Eisenstein integers enables us to give a presentation of the top cohomology of the
congruence subgroups Γ of SLnZ[i] and SLnZ[1+

√
−3

2
]. One might want to compare

these to H̃n−2(T (K)/Γ) where K is either Q[i] or Q[
√
−3].

• Can one utilize the presentation of Brück–P–Sroka of the symplectic Steinberg mod-
ule to get a Miller–P–Putman-type result for principle congruence subgroups of Sp2nZ?
(The simplicial complexes involved for this question seem very technical but maybe
p = 3 is actually not so hard.)

• Knowing H(n2)(Γn(5)) (by Miller–P–Putman), it seems tractable to ask if

IndGLn+1F5

GLnF5
H(n2)−1(Γn(5)) −→ H(n+1

2 )−1(Γn+1(5))

is a surjection.

• As far as I know, the Hecke action/Hecke eigenvalues for Hvcd(Γn(5)) have not been
calculated yet.
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8.1 Symmetric spaces and horoballs

Exercise 24. Let A,B ∈ SLnR. Check that AAT is a positive definite symmetric matrix.
Check that every positive definite symmetric matrix has this form. Check thatAAT = BBT

if and only if B−1A ∈ SO(n).

Exercise 25. What is the action of SL2Z on H2 induced by the homeomorphism X2
∼= H2?

Exercise 26. For each rational number q = a
b
∈ Q with a, b ∈ Z that are coprime, let there

be a circle tangent to the real number line in C at a
b

from above with diameter 1
b2

. (Call this
the circle “at a

b
”). These are call Ford circles. They are examples of hyperbolic horocycles.

(a) Prove that the circle at 1
2

is exactly the circle tangent to the circle at 0, the circle at 1,
and the real line.

(b) Prove that the circle at 1
3

is exactly the circle that touches the circle at 0, the circle at 1
2
,

and the real line.

(c) Show in general that none of these circles intersect transversely and that the two
circles at a

b
and c

d
touch if and only if

det

(
a b
c d

)
= ±1.

Exercise 27. We consider the Ford circles under the action of SL2Z.

(a) Show that the matrix (
a b
c d

)
∈ SL2Z

sends the circle at 0 to the circle at b
d

(and the horizontal line through i if d = 0).

(b) If one shrinks the circle at 0 by the factor λ > 0, by what factor is its SL2Z-image at b
d

shrunk?
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8.2 The Tits buildings

Let F be a field, and V an F-vector space. Recall that the Tits building T (V ) is the geomet-
ric realization of the poset of proper nonzero vector subspaces of V under inclusion. We
sometimes write Tn(F) for T (Fn).

With the following exercises, we can extend the definition of the Tits building to PIDs.

Exercise 28. Let R be a PID, and U ⊆ Rn be an R-submodule. Show that the following
conditions are equivalent. If these conditions hold, we say that U is split or that U is a
summand of Rn.

(i) There exists an R-submodule C such that Rn = U ⊕ C.

(ii) There exists a basis for U that extends to a basis for Rn.

(iii) Any basis for U extends to a basis for Rn.

(iv) The quotient Rn/U is a free R-module.

Exercise 29. Let R be a PID. An element v = (r1, r2, . . . , rn) ∈ Rn is called unimodular if the
ideal generated by (r1, r2, . . . , rn) is R. In other words, the gcd of (r1, r2, . . . , rn) is a unit.

(a) Show that a nonzero element v ∈ Rn spans a direct summand of Rn if and only if it
is unimodular.

(b) Show that v ∈ Rn is an element of a basis for Rn if and only if it is unimodular.

(c) Give an example of a PID R and two unimodular vectors in Rn that can never both
be elements of the same basis.

For R a PID and V a free R-module, we may further define T (V ) to be the poset of proper
nonzero summands of V under inclusion.

Exercise 30. Let R be a PID, and let U, V be summands of Rn.

(a) Show that U ∩ V is always a summand of Rn.

(b) Show that U + V need not be a summand of Rn.

Exercise 31. Let U ⊆ Rn be a direct summand, and let W ⊆ U . Show that W is a summand
of U if and only if it is a summand of Rn.

In the next exercises, we will show that this ostensible generalizations of the Tits buildings
to PIDs in fact reduces to the field case.
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Exercise 32. Let R be a PID and F (R) be its field of fractions.

(a) Show that there is a bijection between R-submodule summands of Rn and F (R)-
vector subspaces of F (R)n, given by the following correspondence. Consider Rn as a
subset of F (R)n.

{summands of Rn} ←→ {subspaces of F (R)n}
U 7−→ F (R)-span of U

V ∩Rn ←− [ V

(b) Verify that this bijection induces an isomorphism of posets of submodules under
inclusion.

(c) Conclude that Tn(R) can be canonically identified with Tn(F (R)).

8.3 Coxeter complexes and buildings

The Tits buildings, as the name suggests, are examples of buildings. In this exercise we will
define a building and verify that the Tits buildings satisfy the axioms.

To define a building, we first need the notion of a Coxeter complex.

Definition (Coxeter system). A Coxeter system is a group W (the Coxeter group) along with
a distinguished generating set S = {s1, s2, . . . , sn} ⊆ W such that the corresponding pre-
sentation has the form

W = ⟨s1, s2, . . . , sn | (sisj)mi,j = 1⟩, mi,i = 1, 2 ≤ mi,j ≤ ∞ for i ̸= j.

Coxeter groups are abstract generalizations of reflection groups. Notably for our purposes,
the symmetric group Sn+1 is a Coxeter group with generators the simple transpositions
si = (i i+ 1) and associated presentation

Sn+1 = ⟨s1, s2, . . . , sn | s2i , (sisi+1)
3, (sisj)

2 for |i− j| > 1⟩.

Given a Coxeter system (W,S), a standard subgroup of W is any subgroup WJ generated by
a subset J of S. A standard coset is a coset wWJ for w ∈ W and WJ a standard coset.

Definition (Coxeter complex). Given a Coxeter system (W,S), consider the poset PW,S of
proper standard cosets under reverse inclusion. One way to define the Coxeter complex
XW,S associated to (W,S) is as follows. The p-simplices of XW,S are indexed by standard
cosets wWJ with |J | = n−p−1, and assembled in such a way that the geometric realization
of PW,S is the barycentric subdivision of XW,S . In other words, the poset of cells of XW,S

under inclusion is precisely PW,S .
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Exercise 33. (a) Sketch the Coxeter complex for the symmetric groups S2 and S3.

(b) Describe the standard cosets in the symmetric group Sn+1.

(c) Show that the Coxeter complex of Sn+1 can be identified with the flag complex of
nonempty subsets of the set {1, 2, . . . , n, n+ 1}.

(d) Show that the Coxeter complex of the symmetric group Sn+1 can be identified with
the boundary of a barycentrically-subdivided n-simplex. Conclude that the Coxeter
complex is topologically a sphere Sn−1.

Definition (Building). A building is a simplicial complex ∆ that can be written as a union
of subcomplexes Σ, called apartments, that satisfy the following axioms.
(B0) Each apartment Σ is a Coxeter complex.
(B1) For any two simplices A, B ∈ ∆, there is an apartment Σ containing both of them.
(B2) If Σ and Σ′ are two apartments containing A and B, then there is an isomorphism
Σ→ Σ′ fixing A and B pointwise.

Top-dimensional simplices are called chambers, and codimension-one simplices are panels.

Condition (B2) is equivalent to the following.

(B2’) Let Σ and Σ′ be two apartments containing a simplex C that is a chamber of Σ. Then
there is an isomorphism Σ

∼=−→ Σ′ fixing every simplex of Σ ∩ Σ′.

Let V be a vector space over Q. Recall that the Tits buildings T (V ) is the geometric realiza-
tion of the poset of proper nonzero vector subspaces of V .

Further recall that a frame for V is a decomposition V = L1 ⊕ L2 ⊕ · · · ⊕ Ln of V as a direct
sum of 1-dimensional subspaces Li. For each frame L = {L1, L2, · · · , Ln} for V , we define
an apartment AL to be the full subcomplex of T (V ) on vertices corresponding to direct
sums of all proper nonempty subsets of {L1, L2, · · · , Ln}.

In the next exercise we will verify that the Tits building T (V ), along with the system of
apartments {AL | L a frame for V }, is a building.

Exercise 34. (a) Suppose V is n-dimensional. Show that an apartment AL is isomorphic
to the Coxeter complex associated to Sn. Conclude that axiom (B0) holds.
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(b) Given a flag 0 ⊊ V1 ⊊ V2 ⊊ · · · ⊊ Vp ⊊ V , let’s say that frame L = {L1, L2, · · · , Ln}
is compatible with this flag if every subspace Vi is a direct sum of lines Lj . Show that,
given any two flags in V , there is a frame that is compatible with both of them. Use
this result to conclude that (B1) holds.
(Despite being “just” elementary linear algebra, this exercise is not entirely trivial!
See Abramenko–Brown [AB, Section 4.3].)

(c) Verify that axiom (B2’) holds.
Hint: Given a chamber in Σ corresponding to a complete flag 0 ⊊ V1 ⊊ V2 ⊊ · · · ⊊
Vn−1 ⊊ V , construct an explicit isomorphism to the Coxeter complex using the func-
tion

ϕ : Σ −→ {subsets of [n]}
U 7−→ {i | dim(U ∩ Vi) < dim(U ∩ Vi+1)}

Observe that this isomorphism depends only on the chamber and not on Σ.

8.4 The Solomon–Tits Theorem

The goal of this section is to give a proof of the Solomon–Tits theorem, which states that
the Tits building Tn(K) is homotopy equivalent to a wedge of spheres of dimension (n−2).

Fix a field K and a positive integer n. Recall that the Tits building Tn(K) is the geomet-
ric realization of the poset of proper nonzero subspaces of Kn under inclusion. Explicitly,
Tn(K) is a simplicial complex defined as follows. The vertices of Tn(K) are proper nonzero
subspaces of Kn. A collection of vertices span a simplex precisely when they form a flag.

Exercise 35. Fix a field K. Verify that, when n = 1, the building Tn(K) is empty, and when
n = 2, the building Tn(K) is a discrete set of points, that is, a wedge of 0-spheres.

Exercise 36.

Draw the Tits building for K = Z/2Z and n ≤ 3. Can you see explicitly that it is homotopy
equivalent to a wedge of spheres?

To pove the Solomon–Tits theorem, will use a method sometimes called “discrete Morse
theory”. I first learned this proof from Bestvina’s notes [Be].

Definition (Realizations and links). For a poset T , write |T | for its geometric realization.
For t ∈ T , we write LkT (t) for the link of t in T ,

LkT (t) = {s ∈ T | s < t or s > t}.
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We write Lk↑T (t) for the subposet

Lk↑T (t) = {s ∈ T | s > t}

and we write Lk↓T (t) for the subposet

Lk↓T (t) = {s ∈ T | s < t}.

Exercise 37.

Verify that |LkT (t)| = |Lk↑T (t)|
∗

join |Lk↓T (t)|.

The following result is our key lemma.

Lemma (Discrete Morse Theory). Let T be a poset with T = X0 ∪ T1 ∪ · · · ∪ Tm as sets. Let
Xk = X0 ∪ T1 ∪ · · · ∪ Tk. Suppose the following:
(i) |X0| is contractible.
(ii) For i ≥ 1 then any pair s, t ∈ Ti of distinct elements are not comparable.
(iii) For i ≥ 1 and t ∈ Ti,

|LkT (t) ∩Xi−1| ≃
∨

Sd−1 or |LkT (t) ∩Xi−1| ≃ ∗.

Then |T | is (d−1)-connected. In particular, if |LkT (t)∩Xi−1| ≃
∨
Sd−1 for at least one i and

t, then |T | is homotopy equivalent to a wedge of d-spheres. Otherwise, |T | is contractible.

Exercise 38. Prove the Discrete Morse Theory lemma.

Exercise 39. Fix a fieldK and n ≥ 2. Let T be the poset of nonzero proper subspaces ofKn,
so Tn(K) is defined to be |T |. Assume by induction that Tm(K) ≃

∨
Sm−2 for all m < n; we

proved the base case in Exercise (35). Fix a line L in Kn.

• Let X0 be the subposet of T on vertices V such that L ⊆ V .

• For i = 1, . . . , n− 1, let Ti be the set of subspaces V of Kn

Ti = {V ⊆ Kn | dim(V ) = i, L ̸⊆ V }

(a) Verify that |X0| ⊆ |T | is the star on the vertex L, and hence contractible.

(b) Verify that for fixed i, distinct elements in Ti are not comparable.

(c) Suppose 1 ≤ i ≤ (n− 2). Show that, for V ∈ Ti, the subspace (V + L) is a cone point
of |LkT (V ) ∩Xi−1|. (Why did we need the assumption i ≤ (n− 2)?)
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(d) Verify that, for i = n− 1 and V ∈ Ti,

|LkT (V ) ∩Xi−1| ≃
∨

Sn−3.

Hint: Compare |LkT (V ) ∩Xi−1| to Tn−1(K).

(e) Use the Discrete Morse Theory lemma to conclude that Tn(K) ≃
∨
Sn−2.

There are other elegant approaches to computing the homotopy type of Tn(K). For exam-
ple, see Abramenko–Brown [AB, Section 4.12] for an approach using the theory of shella-
bility. In principle, these proofs can also be used to describe a generating sets for the
reduced homology of Tn(K).

8.5 The Sharbly resolution

Let R be a PID, and let Stn(R) be the associated Steinberg module,

Stn(R) := H̃n−2(Tn(R);Z).

By Exercise 32, we can identify Tn(R) with Tn(F), where F is the field of fractions of R.

In this section we will construct a resolution of the Steinberg module due to Lee–Szczarba
[LS], which has since been named the Sharbly resolution. To quote Lee–Szczarba [LS, Section
4]:

In theory, one should be able to use [the Sharbly resolution] to compute the groups
Hq(SLn(R); Stn(R)) for q ≥ 0. However, because of the size of [the terms of the reso-
lution], this is impractical except when q = 0.

The proof of the Sharbly resolution is both a significant historical development, and also an
instructive application of some of the techniques of the field. The construction will use the
Acyclic Covering Lemma (See Brown “Cohomology of Groups” Section VII Lemma 4.4). Let
X be a CW complex, and suppose X is the union of a family of nonempty subcomplexes

X =
⋃
α∈J

Xα.

The nerve N of the family Xα is the abstract simplicial complex with vertex set J and such
that a finite subset σ ⊆ J spans a simplex if and only if the intersection Xσ =

⋂
α∈σXα is

nonempty.
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Lemma (Acyclic Covering Lemma). Suppose a CW complex X is a union of subcom-
plexes Xα such that every non-empty intersection Xα0 ∩ Xα1 ∩ · · · ∩ Xαp is acyclic. Then
H∗(X) ∼= H∗(N), where N is the nerve of the cover.

Exercise 40. (Bonus). Use the Mayer–Vietoris spectral sequence to prove the Acyclic Cov-
ering Lemma. See Brown [Br, Section VII.4].

Let R be a PID. Recall that an element v = (r1, r2, . . . , rn) ∈ Rn is called unimodular if the
ideal generated by (r1, r2, . . . , rn) is R.

Sq = Sq(R
n) = {(n+ q)× n matrices A = (ai,j) over R | (ai,1, . . . , ai,n) is unimodular for all i}

Pq = Pq(R
n) = {A ∈ Sq | each n× n submatrix has determinant 0}

These sets have actions of GLn(R) by right multiplication. Let C(Sq) and C(Pq) denote
the free abelian groups on Sq and Pq, respectively, and let Cq(R

n) = C(Sq)/C(Pq) be the
quotient; it is a right Z[GLn(R)]-module.

Our goal is to prove the following, Lee–Szczarba Theorem 3.1.

Theorem (The Sharbly resolution). There is an epimorphism ϕ : C0(R
n)→ Stn(R) of right

Z[GLn(R)]-modules so that

−→ Cq(R
n) −→ Cq−1(R

n) −→ · · · −→ C0(R
n)

ϕ−→ Stn(R) −→ 0

is a free resolution of Stn(R) by Z[GLn(R)]-modules.

Exercise 41. (a) Let K be the simplicial complex whose vertices are the unimodular ele-
ments of Rn, and whose simplices are all finite nonempty subsets of vertices. Show
that K is contractible.

(b) Use the long exact sequence of a pair to show that, for a subcomplex L ⊆ K,

Hq(K,L) ∼= H̃q−1(L).

(c) Let L ⊆ K be the subcomplex consisting of all simplices with the property that all
of their vertices lie in a proper direct summand of Rn. Let {Hi | i ∈ I} be the set
of direct summands of Rn of rank (n − 1). Let Ki be the full subcomplex of L with
vertices lying in Hi. Show that {Ki | i ∈ I} is an acyclic covering of L in the sense of
the Acyclic Covering Lemma.
Hint: First argue that, since R is a PID, a nonempty intersection of summands Hi

must be a direct summand of Rn isomorphic to Rr for some 0 < r < n.
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(d) Let N be the nerve of the cover {Ki | i ∈ I}. Use the Acyclic Covering Lemma to
deduce that Hq(L) ∼= Hq(N) for all q ≥ 0.

(e) Recall that F denotes the field of fractions of R. Let {Wj | j ∈ J} denote the set of
hyperplanes in Fn. Let Tj be the subcomplex of the Tits building Tn(F) consisting of
all simplices with Wj as a vertex. Show that {Tj | j ∈ J} is an acyclic covering of L in
the sense of the Acyclic Covering Lemma.

(f) Let Ñ be the nerve of the cover {Tj | j ∈ J}. Use the Acyclic Covering Lemma to
deduce that Hq(Tn(F)) ∼= Hq(Ñ) for all q ≥ 0.

(g) Show that the mapping

{summands of Rn} −→ {subspaces of Fn ∼= Rn ⊗R F}
H 7−→ H ⊗R F

defines a simplicial isomorphism of N onto Ñ .

(h) We have proved the following isomorphisms. Verify that they are GLn(R)-equivariant.

Hq(K,L) ∼= H̃q−1(L)

∼= H̃q−1(N)

∼= H̃q−1(Ñ)

∼= H̃q−1(Tn(F))

(i) Verify that the (n− 2)-skeleton of L coincides with the (n− 2)-skeleton of K, so

Cq(K,L) = 0 for q ≤ n− 2.

(j) Using the Solomon–Tits result that Tn(F) ≃
∨
Sn−2, deduce that there is an exact

sequence

· · · −→ Cq+n(K,L) −→ Cq+n−1(K,L) −→ · · · −→ Cn−1(K,L) −→ Stn(R) −→ 0.

(k) Show that there are GLn(R)-equivariant isomorphisms of chain complexes

Cq+n−1(K) ∼= C(Sq)

Cq+n−1(L) ∼= C(Pq)

Cq+n−1(K,L) ∼= Cq(R
n)

(l) Conclude the existence of the Sharbly resolution.
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(m) Show that differentials in the Sharbly resolution are induced by the map

Sq −→ Sq−1

A 7−→
∑

(−1)idi(A)

where di is the map that deletes the ith row of the matrix A.

Prove that the Sharbly resolution is free.
Hint: First verify that GLn(R) acts freely on the set of (n+ q)× n matrices A satisfying

• each row of A is unimodular,

• some (n× n)-submatrix of A has non-vanishing determinant.

Give a geometric interpretation of the map ϕ : C0(R
n) → Stn(R). Conclude that the Stein-

berg module is generated by apartment classes.

Let R be a Euclidean ring with a multiplicative Euclidean norm. Using the Sharbly resolu-
tion, Lee–Szczarba went on to prove that the SLn(R)–coinvariants of C0(R

n) vanish, which
implies that

H0(SLn(R); Stn(R)) = 0.

By virtual Bieri–Eckmann duality, this then implies that the rational cohomology of SLn(R)
vanishes in its virtual cohomological dimension.

Exercise 42.

(Bonus). Let R be a Euclidean ring with a multiplicative Euclidean norm. Prove directly
that SLn(R)–coinvariants of C0(R

n) vanish. See Lee–Szczarba [LS, Theorem 4.1].

8.6 Maazen’s theorem for n = 2

The exercises in this section are a warm-up to Wilson Lecture 3.

Definition (Complex of partial bases). Fix a PID R. Let PBn(R) denote the complex of par-
tial bases in Rn. Its vertices are primitive elements v0 of Rn, and vertices {v0, . . . , vp} span a
p-simplex precisely when they are a subset of a basis forRn (possibly equal to a basis ofRn).
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Exercise 43. Fix a PID R. Let Pn(R) denote the poset of partial bases of Rn under inclu-
sion. Show that the geometric realization |Pn(R)| is equal to the barycentric subdivision of
PBn(R).

The goal of this section is to prove the following result of Maazen in the case n = 2.

Theorem (Maazen). Let R be a Euclidean domain. Let Pn(R) denote the poset of partial
bases of Rn under inclusion. Then |Pn(R)| is Cohen–Macaulay.

Exercise 44. Fix a Euclidean ring R with norm | · |, and let n = 2.

(a) Explain why, to prove Maazen’s theorem in the case n = 2, it suffices to show that
the graph |P2(R)| is connected, equivalently, that PB2(R) is connected. Thus given a

vertex indexed by a primitive vector
[
a
b

]
in R2, it suffices to find a path to the vertex[

1
0

]
.

(b) Prove the following claim: Given a primitive vector
[
a
b

]
in R2 with |b| > 0, there is a

basis {[
a
b

]
,

[
c
d

]}
of R2 with |d| < |b|.

Hint: First choose any partial basis
{[

a
b

]
,

[
c′

d′

]}
, and consider elements

[
c
d

]
of the

form [
c′

d′

]
− q

[
a
b

]
, q ∈ R.

(c) Explain why the claim completes the proof.

(d) (Bonus). Can you generalize this proof strategy to n ≥ 2?

8.7 Poset homology

These exercises are meant to be attempted while or after reading the appendix on the topic.
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Exercise 45. Let X be a poset and denote the simplicial complex of chains (or flags) in X
by |X|. Show that the simplicial homology of |X| agrees with the poset homology of X .
(Use trivial coefficients for both, that means the functor X → Ab that sends every object to
Z and every map (inclusion) to the identity map on Z.)

Exercise 46. Let K be a simplicial complex and X the poset of its simplices (ordered by
inclusion). Check that |X| is the barycentric subdivision of K.

Exercise 47. (harder) Prove the Solomon–Tits Theorem by induction using the reduced
map-of-poset spectral sequence on the poset inclusion Tn−1(F ) ⊂ Tn(F ).
Bonus: Show that apartments associated to bases of F n that come from unipotent upper
triangular matrices give a Z-basis of Stn(F ).

A Poset homology and the map of poset spectral sequence

Let X be a poset. We consider X as a category with its elements being objects and there
is a morphism x0 → x1 for elements x0, x1 ∈ X exactly if x0 ≤ x1. Let F : X → Ab be a
functor. Then we can define a chain complex

Cp(X;F ) =
⊕

x0<···<xp

F (x0)

with the differential being the alternating sum of di : Cp → Cp−1 where d0 is given by the
map F (x0) → F (x1) induced by x0 < x1 of the summands corresponding to x0 < · · · < xp
and x1 < · · · < xp, respectively, and for i > 0, di is the identity map F (x0) → F (x0) of the
summands corresponding to x0 < · · · < xp and x0 < · · · < x̂i < · · · < xp. We define poset
homology as the homology of this chain complex

Hp(X;F ) = Hp(C∗(X;F )).

A map of posets f : X → Y is a functor between the categories, or concretely is a map
such that f(x0) ≤ f(x1) in Y if x0 ≤ x1 in X . This defines the category of posets. Define the
poset fiber

f≤y = {x ∈ X | f(x) ≤ y}.
Note that y 7→ Hp(f≤y;F ) is a functor Y → Ab because for y0 < y1 there is an inclusion⊕

x0<···<xp;f(xp)≤y0

F (x0) −→
⊕

x0<···<xp;f(xp)≤y1

F (x0).

Map of poset spectral sequence: Let f : X → Y be a map of posets. There is a spectral
sequence

E2
pq = Hp(Y ; y 7→ Hq(f≤y;F )) =⇒ Hp+q(X;F ).
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Proof. Consider the double complex

Dpq =
⊕

x0<···<xp
y0<···<yq
f(xp)≤y0

F (x0).

The corresponding spectral sequence is

E1
pq
∼=

⊕
x0<···<xp

Hq(Y≥f(xp);F (x0))

on the first page. Because Y≥f(xp) has a cone point in f(xp), it is contractible and this spectral
sequence actually simplifies to

E1
pq
∼=

{⊕
x0<···<xp

F (x0) q = 0

0 q ̸= 0.

Therefore the second page collapses to

E2
pq
∼=

{
Hp(X;F ) q = 0

0 q ̸= 0.

And this implies that the spectral sequence converges to Hp+q(X;F ).
Now transposing the double complex, we get another spectral sequence that also con-

verges to Hp+q(X;F ). This spectral sequence is

E1
pq
∼=

⊕
y0<···<yp

Hq(f≤y0 ;F )

and thus
E2

pq
∼= Hp(Y ; y 7→ Hq(f≤y;F ))

as asserted.

With constant integer coefficients, we may define reduced poset homology by aug-
menting the chain complex to

C̃p(X;Z) =


Z p = −1,⊕
x0<···<xp

Z p ≥ 0,

0 otherwise.
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More generally, we also define the relative homology H∗(f) of a map of posets f : X → Y
to be the homology of the mapping cone of C∗(X;Z)→ C∗(Y ;Z).

Reduced map of poset spectral sequences: Let f : X → Y be a map of posets. There is a
spectral sequence

E2
pq = Hp(Y ; y 7→ H̃q(f≤y;Z)) =⇒ Hp+q+1(f).

Proof. Let us consider the double complex

Dpq =



⊕
y0<···<yq

Z p = −1, q ≥ 0,⊕
x0<···<xp
y0<···<yq
f(xp)≤y0

Z p, q ≥ 0,

0 otherwise.

The corresponding spectral sequence is

E1
pq
∼=


Hq(Y ;Z) p = −1, q ≥ 0,⊕
x0<···<xp

Hq(Y≥f(xp);Z) p, q ≥ 0,

0 otherwise.

Because Y≥f(xp) is contractible, E1
pq
∼= 0 unless p = −1 or q = 0. Turning all the pages,

provides the following long exact sequence for the total homology of the double complex.

· · · → H1(X;Z)→ H1(Y ;Z)→ H0(Tot∗(D))→ H0(X;Z)→ H0(Y ;Z)→ H−1(Tot∗(D))→ 0

This implies that the spectral sequence converges to Hp+q+1(f).
Now transposing the double complex, we get another spectral sequence that also con-

verges to Hp+q+1(f). This spectral sequence is

E1
pq
∼=

⊕
y0<···<yp

H̃q(f≤y0 ;Z)

and thus
E2

pq
∼= Hp(Y ; y 7→ H̃q(f≤y;Z))

as asserted.

Functors supported on an antichain: Suppose that F : Y → Ab is a functor supported on
elements of an anitchain A. Then

Hp(Y ;F ) =
⊕
y0∈A

H̃p−1(Y>y0 ;F (y0)).
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Proof. Suppose that F : Y → Ab is supported on elements of an antichain A.

Cp(Y ;F ) =
⊕

y0<···<yp∈Y

F (y0) ∼=
⊕
y0∈A

F (y0)⊗Z
⊕

y0<···<yp

Z


∼=

⊕
y0∈A

(
F (y0)⊗Z C̃p−1(Y>y0 ;Z)

)
.

The composition of these isomorphisms is compatible with the differentials because d0 = 0
as no F (y1) = 0 for all y1 > y0. (The support of F would not be an anitchain otherwise.)
Hence gives an isomorphism of chain complexes. Thus

Hp(Y ;F ) =
⊕
y0∈A

H̃p−1(Y>y0 ;F (y0)).
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