Exercise \# 1. (Recognizing surfaces) Which of the following are surfaces? Which are surfaces with boundary?

(a) 2-Sphere S^{2}

(b) Solution to $x^{2}+y^{2}=z^{2}$

(c) Solution to $z=x^{2}+y^{2}$

(d) Genus 4 Surface

(g) Quotient Space $A B A B^{-1}$
(e) Closed Mobius Strip

(h) Quotient Space $A A$

(f) Closed Hemisphere

(i) Quotient Space $A A A A$

Exercise \# 2. (Isomorphisms of surfaces) Sort the following surfaces into isomorphism classes.

Exercise \# 3. (Quotient surfaces) Identify among the following quotient spaces: a cylinder, a Möbius band, a sphere, a torus, real projective space, and a Klein bottle.

Exercise \# 4. (Gluing Mobius bands) How many boundary components does a Mobius band have? What surface do you get by gluing two Mobius bands along their boundary components?

Exercise \# 5. (More quotient surfaces) Identify the following surfaces.

Triangulations

Exercise \# 6. (Minimal triangulations) What is the minimum number of triangles needed to triangulate a sphere? A cylinder? A torus?

Orientability

Exercise \# 7. (Orientability is well-defined) Fix a surface S. Prove that if one triangulation of S is orientable, then all triangulations of S are orientable.

Exercise \# 8. (Orientability) Prove that the disk, sphere, and torus are orientable. Prove that the Mobius strip and Klein bottle are nonorientiable. Is a genus g surface S_{g} always orientable?

Euler Characteristic

Exercise \# 9. (Euler characteristic of a closed 2-disk $\overline{D^{2}}$) Given any triangulation of a closed disk $\overline{D^{2}}$, prove that

$$
\chi:=\# \text { Vertices }- \text { \#Edges }+\# \text { Faces } \quad \text { is always equal to } 1
$$

Hint: First prove this is true for a single triangle, then proceed by induction on the number of triangles. What happens to the alternating sum χ when you delete a triangle?

Exercise \# 10. (Euler characteristic of a 2 -sphere S^{2}) Use the result of Exercise \#9 to prove that for any triangulation of a 2 -sphere $S^{2}, \chi=2$.

Exercise \# 11. (More Euler characteristics) For each of the surfaces in Exercises \#3 and \#5, choose a triangulation and use it to compute the Euler characteristic of the surface.

