MASTERCLASS EXERCISES

Jenny Wilson, Lecture 1

Introduction to the Tits buildings

Let \mathbb{F} be a field, and V an \mathbb{F}-vector space. Recall that the Tits building $\mathcal{T}(V)$ is the geometric realization of the poset of proper nonzero vector subspaces of V under inclusion. We sometimes write $\mathcal{T}_{n}(\mathbb{F})$ for $\mathcal{T}\left(\mathbb{F}^{n}\right)$.

With the following exercises, we can extend the definition of the Tits building to PIDs.
(1) Let R be a PID, and $U \subseteq R^{n}$ be an R-submodule. Show that the following conditions are equivalent. If these conditions hold, we say that U is split or that U is a summand of R^{n}.
(i) There exist an R-submodule C such that $R^{n}=U \oplus C$.
(ii) There exists a basis for U that extends to a basis for R^{n}.
(iii) Any basis for U extends to a basis for R^{n}.
(iv) The quotient R^{n} / U is torsion-free.
(2) Let R be a PID. An element $v=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in R^{n}$ is called unimodular if the ideal generated by $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is R. In other words, the gcd of $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is a unit.
(a) Show that a nonzero element $v \in R^{n}$ spans a direct summand of R^{n} if and only if it is unimodular.
(b) Show that $v \in R^{n}$ is an element of a basis for R^{n} if and only if it is unimodular.
(c) Give an example of a PID R and two unimodular vectors in R^{n} that can never both be elements of the same basis.
For R a PID and V a free R-module, we may further define $\mathcal{T}(V)$ to be the poset of prroper nonzero summands of V under inclusion.
(3) Let R be a PID, and let U, V be summands of R^{n}.
(a) Show that $U \cap V$ is always a summand of R^{n}.
(b) Show that $U+V$ need not be a summand of R^{n}.
(4) Let $U \subseteq R^{n}$ be a direct summand, and let $W \subseteq U$. Show that W is a summand of U if and only if it is a summand of R^{n}.

In the next exercises we will that this ostensible generalizations of the Tits buildings to PIDs in fact reduces to the field case.
(5) Let R be a PID and $F(R)$ be its field of fractions.
(a) Show that there is a bijection between R-submodule summands of R^{n} and $F(R)$-vector subspaces of $F(R)^{n}$, given by the following correspondence. Identify $F(R)^{n}$ with $R^{n} \otimes_{R}$ $F(R)$.

$$
\begin{aligned}
\text { \{summands of } \left.R^{n}\right\} & \longleftrightarrow\left\{\text { subspaces of } F(R)^{n}\right\} \\
U & \longmapsto U \otimes_{R} F(R) \\
V \cap R^{n} & \longleftrightarrow V
\end{aligned}
$$

(b) Verify that this bijection induces an isomorphism of posets of submodules under inclusion.
(c) Conclude that $\mathcal{T}_{n}(R)$ can be canonically identified with $\mathcal{T}_{n}(F(R))$.

Coxeter complexes and buildings

The Tits buildings, as the name suggests, are examples of buildings. In this exercise we will define a building and verify that the Tits buildings satisfy the axioms.

To define a building, we first need the notion of a Coxeter complex.
Definition (Coxeter system). A Coxeter system is a group W (the Coxeter group) along with a distinguished generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subseteq W$ such that the corresponding presentation has the form

$$
W=\left\langle s_{1}, s_{2}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i, j}}=1\right\rangle, \quad m_{i, i}=1, \quad 2 \leq m_{i, j} \leq \infty \text { for } i \neq j
$$

Coxeter groups are abstract generalizations of reflection groups. Notably for our purposes, the symmetric group S_{n+1} is a Coxeter group with generators the simple transpositions $s_{i}=(i i+1)$ and associated presentation

$$
\left.S_{n+1}=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right| s_{i}^{2},\left(s_{i} s_{i+1}\right)^{3},\left(s_{i} s_{j}\right)^{2} \text { for }|i-j|>1\right\rangle .
$$

Given a Coxeter system (W, S), a standard subgroup of W is any subgroup W_{J} generated by a subset J of S. A standard coset is a coset $w W_{J}$ for $w \in W$ and W_{J} a standard coset.

Definition (Coxeter complex). Given a Coxeter system (W, S), consider the poset $P_{W, S}$ of proper standard cosets under reverse inclusion. One way to define the Coxeter complex $X_{W, S}$ associated to (W, S) is as follows. The p-simplices of $X_{W, S}$ are indexed by standard cosets $w W_{J}$ with $|J|=n-p-1$, and assembled in such a way that the geometric realization of $P_{W, S}$ is the barycentric subdivision of $X_{W, S}$. In other words, the poset of cells of $X_{W, S}$ under inclusion is precisely $P_{W, S}$.
(6) (a) Sketch the Coxeter complex for the symmetric groups S_{2} and S_{3}.
(b) Describe the standard cosets in the symmetric group S_{n+1}.
(c) Show that the Coxeter complex of S_{n+1} can be identified with the flag complex of nonempty subsets of the set $\{1,2, \ldots, n, n+1\}$.
(d) Show that the Coxeter complex of the symmetric group S_{n+1} can be identified with the boundary of a barycentrically-subdivided n-simplex. Conclude that the Coxeter complex is topologically a sphere S^{n-1}.

Definition (Building). A building is a simplicial complex Δ that can be written as a union of subcomplexes Σ, called apartments, that satisfy the following axioms.
(B0) Each apartment Σ is a Coxeter complex.
(B1) For any two simplices $A, B \in \Delta$, there is an apartment Σ containing both of them.
(B2) If Σ and Σ^{\prime} are two apartments containing A and B, then there is an isomorphism $\Sigma \rightarrow \Sigma^{\prime}$ fixing A and B pointwise.

Top-dimensional simplices are called chambers, and codimension-one simplices are panels.
Condition (B2) is equivalent to the following.
($\mathbf{B 2}^{\prime}$) Let Σ and Σ^{\prime} be two apartments containing a simplex C that is a chamber of Σ. Then there is an isomorphism $\Sigma \stackrel{\cong}{\leftrightarrows} \Sigma^{\prime}$ fixing every simplex of $\Sigma \cap \Sigma^{\prime}$.

Let V be a vector space over \mathbb{Q}. Recall that the Tits buildings $\mathcal{T}(V)$ is the geometric realization of the poset of proper nonzero vector subspaces of V.

Further recall that a frame for V is a decomposition $V=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{n}$ of V as a direct sum of 1-dimensional subspaces L_{i}. For each frame $L=\left\{L_{1}, L_{2}, \cdots, L_{n}\right\}$ for V, we define an apartment A_{L}
to be the full subcomplex of $\mathcal{T}(V)$ on vertices corresponding to direct sums of all proper nonempty subsets of $\left\{L_{1}, L_{2}, \cdots, L_{n}\right\}$.

In the next exercise we will verify that the Tits building $\mathcal{T}(V)$, along with the system of apartments $\left\{A_{L} \mid L\right.$ a frame for $\left.V\right\}$, is a building.
(7) (a) Suppose V is n-dimensional. Show that an apartment A_{L} is isomorphic to the Coxeter complex associated to S_{n}. Conclude that axiom (B0) holds.
(b) Given a flag $0 \subsetneq V_{1} \subsetneq V_{2} \subsetneq \cdots \subsetneq V_{p} \subsetneq V$, let's say that frame $L=\left\{L_{1}, L_{2}, \cdots, L_{n}\right\}$ is compatible with this flag if every subspace V_{i} is a direct sum of lines L_{j}. Show that, given any two flags in V, there is a frame that is compatible with both of them. Use this result to conclude that (B1) holds.
(Despite being "just" elementary linear algebra, this exercise is not entirely trivial! See Abramenko-Brown "Buildings" Section 4.3.)
(c) Verify that axiom (B2') holds.

Hint: Given a chamber in Σ corresponding to a complete flag $0 \subsetneq V_{1} \subsetneq V_{2} \subsetneq \cdots \subsetneq V_{n-1} \subsetneq$ V, construct an explicit isomorphism to the Coxeter complex using the function

$$
\begin{aligned}
\phi: \Sigma & \longrightarrow\{\text { subsets of }[n]\} \\
U & \longmapsto\left\{i \mid \operatorname{dim}\left(U \cap V_{i}\right)<\operatorname{dim}\left(U \cap V_{i+1}\right)\right\}
\end{aligned}
$$

Observe that this isomorphism depends only on the chamber and not on Σ.

Solomon-Tits

The goal of this section is to give a proof of the Solomon-Tits theorem, which states that the Tits building $\mathcal{T}_{n}(K)$ is homotopy equivalent to a wedge of spheres of dimension $(n-2)$.

Fix a field K and a positive integer n. Recall that the Tits building $\mathcal{T}_{n}(K)$ is the geometric realization of the poset of proper nonzero subspaces of K^{n} under inclusion. Explicitly, $\mathcal{T}_{n}(K)$ is a simplicial complex defined as follows. The vertices of $\mathcal{T}_{n}(K)$ are proper nonzero subspaces of K^{n}. A collection of vertices span a simplex precisely when they form a flag.
(8) Fix a field K. Verify that, when $n=1$, the building $\mathcal{T}_{n}(K)$ is empty, and when $n=2$, the building $\mathcal{T}_{n}(K)$ is a discrete set of points, that is, a wedge of 0 -spheres.
(9) Draw the Tits building for $K=\mathbb{Z} / 2 \mathbb{Z}$ and $n \leq 3$. Can you see explicitly that it is homotopy equivalent to a wedge of spheres?

To pove the Solomon-Tits theorem, will use a method sometimes called "discrete Morse theory". I first learned this proof from Bestvina's notes 'PL Morse Theory'.

Definition (Realizations and links). For a poset T, write $|T|$ for its geometric realization. For $t \in T$, we write $\mathrm{Lk}_{T}(t)$ for the link of t in T,

$$
\mathrm{Lk}_{T}(t)=\{s \in T \mid s<t \text { or } s>t\} .
$$

We write $\mathrm{Lk}_{T}^{\uparrow}(t)$ for the subposet

$$
\operatorname{Lk}_{T}^{\uparrow}(t)=\{s \in T \mid s>t\}
$$

and we write $\mathrm{Lk}_{T}^{\downarrow}(t)$ for the subposet

$$
\mathrm{Lk}_{T}^{\downarrow}(t)=\{s \in T \mid s<t\}
$$

(10) Verify that $\left|\mathrm{Lk}_{T}(t)\right|=\left|\mathrm{Lk}_{T}^{\uparrow}(t)\right|$ join $\left|\operatorname{Lk}_{T}^{\downarrow}(t)\right|$.

The following result is our key lemma.
Lemma (Discrete Morse Theory). Let T be a poset with $T=X_{0} \cup T_{1} \cup \cdots \cup T_{m}$ as sets. Let $X_{k}=X_{0} \cup T_{1} \cup \cdots \cup T_{k}$. Suppose the following:
(i) $\left|X_{0}\right|$ is contractible.
(ii) For $i \geq 1$ then any pair $s, t \in T_{i}$ of distinct elements are not comparable.
(iii) For $i \geq 1$ and $t \in T_{i}$,

$$
\left|\mathrm{Lk}_{T}(t) \cap X_{i-1}\right| \simeq \bigvee S^{d-1} \quad \text { or } \quad\left|\mathrm{Lk}_{T}(t) \cap X_{i-1}\right| \simeq *
$$

Then $|T|$ is $(d-1)$-connected. In particular, if $\left|\operatorname{Lk}_{T}(t) \cap X_{i-1}\right| \simeq \bigvee S^{d-1}$ for at least one i and t, then $|T|$ is homotopy equivalent to a wedge of d-spheres. Otherwise, $|T|$ is contractible.
(11) Prove the Discrete Morse Theory lemma.
(12) Fix a field K and $n \geq 2$. Let T be the poset of nonzero proper subspaces of K^{n}, so $\mathcal{T}_{n}(K)$ is defined to be $|T|$. Assume by induction that $\mathcal{T}_{m}(K) \simeq \bigvee S^{m-2}$ for all $m<n$; we proved the base case in Exercise (8). Fix a line L in K^{n}.

- Let X_{0} be the subposet of T on vertices V such that $L \subseteq V$.
- For $i=1, \ldots, n-1$, let T_{i} be the set of subspaces V of K^{n}

$$
T_{i}=\left\{V \subseteq K^{n} \mid \operatorname{dim}(V)=i, L \nsubseteq V\right\}
$$

(a) Verify that $\left|X_{0}\right| \subseteq|T|$ is the star on the vertex L, and hence contractible.
(b) Verify that for fixed i, distinct elements in T_{i} are not comparable.
(c) Suppose $1 \leq i \leq(n-2)$. Show that, for $V \in T_{i}$, the subspace $(V+L)$ is a cone point of $\left|\operatorname{Lk}_{T}(V) \cap X_{i-1}\right|$. (Why did we need the assumption $i \leq(n-2)$?)
(d) Verify that, for $i=n-1$ and $V \in T_{i}$,

$$
\left|\mathrm{Lk}_{T}(V) \cap X_{i-1}\right| \simeq \bigvee S^{n-3}
$$

Hint: Compare $\left|\mathrm{Lk}_{T}(V) \cap X_{i-1}\right|$ to $\mathcal{T}_{n-1}(K)$.
(e) Use the Discrete Morse Theory lemma to conclude that $\mathcal{T}_{n}(K) \simeq \bigvee S^{n-2}$.

There are other elegant approaches to computing the homotopy type of $\mathcal{T}_{n}(K)$. For example, see Abramenko-Brown "Buildings" Section 4.12 for an approach using the theory of shellability. In principle, these proofs can also be used to describe a generating sets for the reduced homology of $\mathcal{T}_{n}(K)$.

The Sharbly Resolution

Let R be a PID, and let $\operatorname{St}_{n}(R)$ be the associated Steinberg module,

$$
\operatorname{St}_{n}(R):=\widetilde{H}_{n-2}\left(\mathcal{T}_{n}(R) ; \mathbb{Z}\right)
$$

By Exercise 5, we can identify $\mathcal{T}_{n}(R)$ with $\mathcal{T}_{n}(\mathbb{F})$, where \mathbb{F} is the field of fractions of R.
In this section we will construct a resolution of the Steinberg module due to Lee-Szczarba (1976), which has since been named the Sharbly resolution. To quote Lee-Szczarba (Section 4):

In theory, one should be able to use [the Sharbly resolution] to compute the groups $H_{q}\left(\mathrm{SL}_{n}(R) ; \mathrm{St}_{n}(R)\right)$ for $q \geq 0$. However, because of the size of [the terms of the resolution], this is impractical except when $q=0$.
The proof of the Sharbly resolution is both a significant historical development, and also an instructive application of some of the techniques of the field. The construction will use the Acyclic Covering

Lemma (See Brown "Cohomology of Groups" Section VII Lemma 4.4). Let X be a CW complex, and suppose X is the union of a family of nonempty subcomplexes

$$
X=\bigcup_{\alpha \in J} X_{\alpha}
$$

The nerve N of the family X_{α} is the abstract simplicial complex with vertex set J and such that a finite subset $\sigma \subseteq J$ spans a simplex if and only if the intersection $X_{\sigma}=\bigcap_{\alpha \in \sigma} X_{\alpha}$ is nonempty.

Lemma (Acyclic Covering Lemma). Suppose a CW complex X is a union of subcomplexes X_{α} such that every non-empty intersection $X_{\alpha_{0}} \cap X_{\alpha_{1}} \cap \cdots \cap X_{\alpha_{p}}$ is acyclic. Then $H_{*}(X) \cong H_{*}(N)$, where N is the nerve of the cover.
(13) (Bonus). Use the Mayer-Vietoris spectral sequence to prove the Acyclic Covering Lemma. See Brown "Cohomology of Groups" Section VII.4.

Let R be a PID. Recall that an element $v=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in R^{n}$ is called unimodular if the ideal generated by $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is R.

$$
\mathscr{S}_{q}=\mathscr{S}_{q}\left(R^{n}\right)=\left\{(n+q) \times n \text { matrices } A=\left(a_{i, j}\right) \text { over } R \mid\left(a_{i, 1}, \ldots, a_{i, n}\right) \text { is unimodular for all } i\right\}
$$

$$
\mathscr{P}_{q}=\mathscr{P}_{q}\left(R^{n}\right)=\left\{A \in \mathscr{S}_{q} \mid \text { each } n \times n \text { submatrix has determinant } 0\right\}
$$

These sets have actions of $\mathrm{GL}_{n}(R)$ by right multiplication. Let $C\left(\mathscr{S}_{q}\right)$ and $C\left(\mathscr{P}_{q}\right)$ denote the free abelian groups on \mathscr{S}_{q} and \mathscr{P}_{q}, respectively, and let $C_{q}\left(R^{n}\right)=C\left(\mathscr{S}_{q}\right) / C\left(\mathscr{P}_{q}\right)$ be the quotient; it is a right $\mathbb{Z}\left[\mathrm{GL}_{n}(R)\right]$-module.

Our goal is to prove the following, Lee-Szczarba Theorem 3.1.
Theorem (The Sharbly resolution). There is an epimorphism $\phi: C_{0}\left(R^{n}\right) \rightarrow \operatorname{St}_{n}(R)$ of right $\mathbb{Z}\left[\mathrm{GL}_{n}(R)\right]$-modules so that

$$
\longrightarrow C_{q}\left(R^{n}\right) \longrightarrow C_{q-1}\left(R^{n}\right) \longrightarrow \cdots \longrightarrow C_{0}\left(R^{n}\right) \xrightarrow{\phi} \operatorname{St}_{n}(R) \longrightarrow 0
$$

is a free resolution of $\operatorname{St}_{n}(R)$ by $\mathbb{Z}\left[\mathrm{GL}_{n}(R)\right]$-modules.
(a) Let K be the simplicial complex whose vertices are the unimodular elements of R^{n}, and whose simplices are all finite nonempty subsets of vertices. Show that K is contractible.
(b) Use the long exact sequence of a pair to show that, for a subcomplex $L \subseteq K$,

$$
H_{q}(K, L) \cong \widetilde{H}_{q-1}(L)
$$

(c) Let $L \subseteq K$ be the subcomplex consisting of all simplices with the property that all of their vertices lie in a proper direct summand of R^{n}. Let $\left\{H_{i} \mid i \in I\right\}$ be the set of direct summands of R^{n} of rank $(n-1)$. Let K_{i} be the full subcomplex of L with vertices lying in H_{i}. Show that $\left\{K_{i} \mid i \in I\right\}$ is an acyclic covering of L in the sense of the Acyclic Covering Lemma.
Hint: First argue that, since R is a PID, a nonempty intersection of summands H_{i} must be a direct summand of R^{n} isomorphic to R^{r} for some $0<r<n$.
(d) Let N be the nerve of the cover $\left\{K_{i} \mid i \in I\right\}$. Use the Acyclic Covering Lemma to deduce that $H_{q}(L) \cong H_{q}(N)$ for all $q \geq 0$.
(e) Recall that \mathbb{F} denotes the field of fractions of R. Let $\left\{W_{j} \mid j \in J\right\}$ denote the set of hyperplanes in \mathbb{F}^{n}. Let T_{j} be the subcomplex of the Tits building $\mathcal{T}_{n}(\mathbb{F})$ consisting of all simplices with W_{j} as a vertex. Show that $\left\{T_{j} \mid j \in J\right\}$ is an acyclic covering of L in the sense of the Acyclic Covering Lemma.
(f) Let \tilde{N} be the nerve of the cover $\left\{T_{j} \mid j \in J\right\}$. Use the Acyclic Covering Lemma to deduce that $H_{q}\left(\mathcal{T}_{n}(\mathbb{F})\right) \cong H_{q}(\tilde{N})$ for all $q \geq 0$.
(g) Show that the mapping

$$
\begin{aligned}
\left\{\text { summands of } R^{n}\right\} & \longrightarrow\left\{\text { subspaces of } \mathbb{F}^{n} \cong R^{n} \otimes_{R} \mathbb{F}\right\} \\
H & \longmapsto H \otimes_{R} \mathbb{F}
\end{aligned}
$$

defines a simplicial isomorphism of N onto \tilde{N}.
(h) We have proved the following isomorphisms. Verify that they are $\mathrm{GL}_{n}(R)$-equivariant.

$$
\begin{aligned}
H_{q}(K, L) & \cong \widetilde{H}_{q-1}(L) \\
& \cong \widetilde{H}_{q-1}(N) \\
& \cong \widetilde{H}_{q-1}(\tilde{N}) \\
& \cong \widetilde{H}_{q-1}\left(\mathcal{T}_{n}(\mathbb{F})\right)
\end{aligned}
$$

(i) Verify that the $(n-2)$-skeleton of L coincides with the $(n-2)$-skeleton of K, so

$$
C_{q}(K, L)=0 \quad \text { for } q \leq n-2
$$

(j) Using the Solomon-Tits result that $\mathcal{T}_{n}(\mathbb{F}) \simeq \bigvee S^{n-2}$, deduce that there is an exact sequence

$$
\cdots \longrightarrow C_{q+n}(K, L) \longrightarrow C_{q+n-1}(K, L) \longrightarrow \cdots \longrightarrow C_{n-1}(K, L) \longrightarrow \operatorname{St}_{n}(R) \longrightarrow 0
$$

(k) Show that there are $\mathrm{GL}_{n}(R)$-equivariant isomorphisms of chain complexes

$$
\begin{aligned}
C_{q+n-1}(K) & \cong C\left(\mathscr{S}_{q}\right) \\
C_{q+n-1}(L) & \cong C\left(\mathscr{P}_{q}\right) \\
C_{q+n-1}(K, L) & \cong C_{q}\left(R^{n}\right)
\end{aligned}
$$

(l) Conclude the existence of the Sharbly resolution.
(m) Show that differentials in the Sharbly resolution are induced by the map

$$
\begin{aligned}
\mathscr{S}_{q} & \longrightarrow \mathscr{S}_{q-1} \\
A & \longmapsto \sum(-1)^{i} d_{i}(A)
\end{aligned}
$$

where d_{i} is the map that deletes the $i^{t h}$ row of the matrix A.
(15) Prove that the Sharbly resolution is free.

Hint: First verify that $\operatorname{GL}_{n}(R)$ acts freely on the set of $(n+q) \times n$ matrices A satisfying

- each row of A is unimodular,
- some $(n \times n)$-submatrix of A has non-vanishing determinant.
(16) Give a geometric interpretation of the map $\phi: C_{0}\left(R^{n}\right) \rightarrow \operatorname{St}_{n}(R)$. Conclude that the Steinberg module is generated by apartment classes.

Let R be a Euclidean ring with a multiplicative Euclidean norm. Using the Sharbly resolution, Lee-Szczarba went on to prove that the $\mathrm{SL}_{n}(R)$-coinvariants of $C_{0}\left(R^{n}\right)$ vanish, which implies that

$$
H_{0}\left(\mathrm{SL}_{n}(R) ; \operatorname{St}_{n}(R)\right)=0
$$

By virtual Bieri-Eckmann duality, this then implies that the rational cohomology of $\mathrm{SL}_{n}(R)$ vanishes in its virtual cohomological dimension.
(17) (Bonus). Let R be a Euclidean ring with a multiplicative Euclidean norm. Prove directly that $\mathrm{SL}_{n}(R)$-coinvariants of $C_{0}\left(R^{n}\right)$ vanish. See Lee-Szczarba Theorem 4.1.

Ash-Rudolph

Let $\mathcal{T}_{n}(\mathbb{Q})$ be the Tits building on the rational vector space \mathbb{Q}^{n}. Let A_{L} denote the apartment associated to a frame $L=\left\{L_{1}, L_{2}, \ldots, L_{n}\right\}$ for \mathbb{Q}^{n}. Recall the following.

Definition (Integral apartment). Let $L=\left\{L_{1}, L_{2}, \ldots, L_{n}\right\}$. The frame L (and the apartment A_{L}) are called integral if

$$
\left(L_{1} \cap \mathbb{Z}^{n}\right) \oplus\left(L_{2} \cap \mathbb{Z}^{n}\right) \oplus \cdots \oplus\left(L_{n} \cap \mathbb{Z}^{n}\right)=\mathbb{Z}^{n}
$$

(18) Consider \mathbb{Q}^{2}. Verify that the apartment corresponding to the frame

$$
\left\{\mathbb{Q}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbb{Q}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

is integral, but the apartment corresponding to the frame

$$
\left\{\mathbb{Q}\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbb{Q}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

is not integral.
(19) Develop a determinant condition for verifying whether or not a frame is integral.

Let $L=\left\{L_{1}, L_{2}, \ldots, L_{n}\right\}$ be a frame, and let A_{L} be the associated apartment in the Tits building. Recall from Exercises (6) and (7) that A_{L} is an $(n-2)$-sphere, specifically, it is simplicially isomorphic to the barycentric subdivision of the boundary of an $(n-1)$-simplex.
(20) (a) A permutation $\sigma \in S_{n}$ acts on L by $L_{i} \mapsto L_{\sigma(i)}$. Show that σ induces a simplicial isomorphism $A_{L} \rightarrow A_{L}$. Show that this isomorphism is orientation-preserving if σ is even, and orientation-reversing if σ is odd.
(b) The apartment A_{L} represents a homology class $\left[A_{L}\right] \in H_{n-2}\left(\mathcal{T}_{n}(\mathbb{Q})\right)$. Explain why, to make the sign of $\left[A_{L}\right]$ well-defined, we must order the frame L up to sign. Moreover, the symmetric group $S_{n} \subseteq \mathrm{GL}_{n}(\mathbb{Z})$ acts on $\left[A_{L}\right]$ by sign.
(Some sources leave L unordered and $\left[A_{L}\right]$ only defined up to sign).

Ash-Ruldolph (1979) proved the following.
Theorem (Ash-Rudolph). The homology group $H_{n-2}\left(\mathcal{T}_{n}(\mathbb{Q})\right)$ is generated by integral apartment classes

$$
\left\{\left[A_{L}\right] \left\lvert\, \begin{array}{l}
L \text { an integral frame for } \mathbb{Q}^{n}, \\
\text { ordered up to sign }
\end{array}\right.\right\} .
$$

(21) (a) Find an element of $\mathrm{SL}_{n}(\mathbb{Z})$ that interchanges the two lines

$$
\left\{\mathbb{Q}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbb{Q}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} .
$$

(b) Show that there is no matrix in $\mathrm{SL}_{n}(\mathbb{Z})$ that interchanges the two lines

$$
\left\{\mathbb{Q}\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbb{Q}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} .
$$

(c) Explain why this non-existence result was an obstacle in our first lecture to computing $H_{0}\left(\mathrm{SL}_{n}(\mathbb{Z}) ; \mathrm{St}_{n}(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{Q}\right)$, and explain why it is resolved by Ash-Rudolph.
(22) (Bonus). Again consider \mathbb{Q}^{2}. Write the apartment class corresponding to the frame

$$
\left\{\mathbb{Q}\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbb{Q}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

as a linear combination of integral apartment classes.

This theorem of Ash-Rudolph offers a simpler proof of the earlier theorem of Lee-Szczarba.
(23) (a) Let C_{0} be the free abelian group on the symbols $[L]$ with $L=\left\{L_{0}, L_{1}, \ldots, L_{n}\right\}$ a frame for R^{n}, L ordered up to sign, subject to the relation

$$
\sigma \cdot[L]=(-1)^{\operatorname{sign}(\sigma)}[L] \quad \text { for } \sigma \in S_{n}
$$

Show that the $\mathrm{SL}_{n}(\mathbb{Z})$-coinvariants of C_{0} vanish.
(b) Deduce that $H_{0}\left(\operatorname{SL}_{n}(\mathbb{Z}) ; \operatorname{St}_{n}(\mathbb{Q})\right)=0$.
(c) Deduce that $H^{v c d}\left(\operatorname{SL}_{n}(\mathbb{Z}) ; \mathbb{Q}\right)=0$.

Jenny Wilson, Lecture 2

Simplicial methods and a lemma of Quillen
Recall the definition of the link of a simplex in a simplicial complex.
Definition (Link). Let X be a simplicial complex, and let $\sigma=\left[s_{0}, \ldots, s_{p}\right]$ be a simplex in X. The link $\operatorname{Link}_{X}(\sigma)$ of σ is the subcomplex of X of simplices

$$
\left\{\left[t_{0}, \ldots, t_{q}\right] \mid\left[s_{0}, \ldots, s_{p}, t_{0}, \ldots, t_{q}\right] \text { is a simplex of } X\right\}
$$

(24) (Bonus). What can you say about links of simplices in the Tits buildings $\mathcal{T}_{n}(\mathbb{F})$?

The following is Quillen's definition of a Cohen-Macaulay simplicial complex. We caution that this definition is stronger than other definitions of Cohen-Macaulay appearing in the literature.

Definition (CM complex). A d-dimensional simplicial complex X is Cohen-Macaulay (CM) if (i) X is $(d-1)$-connected,
(ii) $\operatorname{Link}_{X}(\sigma)$ is $(d-2-\operatorname{dim}(\sigma))$-connected for every simplex σ in X.
(We may simplify the statement of the definition if we consider the empty set a (-1)-simplex, and X its link).
(25) Verify that the following simplicial complexes are CM.
(a) an n-simplex, and its barycentric subdivision
(b) the boundary of an n-simplex, and its barycentric subdivision
(c) (Bonus) the join of CM simplicial complexes

In Church-Ellenberg-Farb's proof of Ash-Rudolph's theorem, we used the following lemma. The lemma follows from Quillen's paper "Homotopy properties of the poset of nontrivial p-subgroups of a group," Theorem 9.1 and Corollary 9.7.

For a poset X, let $|X|$ denote its geometric realization. A map $f: X \rightarrow Y$ of posets is strictly increasing if $f\left(x_{1}\right)>f\left(x_{2}\right)$ for all $x_{1}>x_{2}$.

Lemma (Quillen) Let $f: X \rightarrow Y$ be a strictly increasing map of posets. Assume that $|Y|$ is a d-dimensional CM complex. For $y \in Y$, let f_{y} denote the subposet

$$
f_{y}=\{x \in X \mid f(x) \leq y\} \subseteq X
$$

and further assume that $\left|f_{y}\right|$ is CM for all y. Then $|X|$ is CM, and $f_{*}: \widetilde{H}_{d}(|X|) \rightarrow \widetilde{H}_{d}(|Y|)$ surjects.
(26) (Bonus). Prove Quillen's lemma. Hint: See Quillen's paper .

MAAZEN'S THEOREM FOR $n=2$

Definition (Complex of partial bases). Fix a PID R. Let $B_{n}(R)$ denote the complex of partial bases in R^{n}. Its vertices are primitive elements v_{0} of R^{n}, and vertices $\left\{v_{0}, \ldots, v_{p}\right\}$ span a p-simplex precisely when they are a subset of a basis for R^{n} (possibly equal to a basis of R^{n}).
(27) Fix a PID R. Let $P_{n}(R)$ denote the poset of partial bases of R^{n} under inclusion. Show that the geometric realization $\left|P_{n}(R)\right|$ is equal to the barycentric subdivision of $B_{n}(R)$.

The goal of this section is to prove the following result of Maazen in the case $n=2$.
Theorem (Maazen). Let R be a Euclidean domain. Let $P_{n}(R)$ denote the poset of partial bases of R^{n} under inclusion. Then $\left|P_{n}(R)\right|$ is Cohen-Macaulay.
(28) Fix a Euclidean ring R with norm $|\cdot|$, and let $n=2$.
(a) Explain why, to prove Maazen's theorem in the case $n=2$, it suffices to show that the graph $\left|P_{2}(R)\right|$ is connected, equivalently, that $B_{2}(R)$ is connected. Thus given a vertex indexed by a primitive vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ in R^{2}, it suffices to find a path to the vertex $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(b) Prove the following claim: Given a primitive vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ in R^{2} with $|b|>0$, there is a basis

$$
\left\{\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right\}
$$

of R^{2} with $|d|<|b|$.
Hint: First choose any partial basis $\left\{\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c^{\prime} \\ d^{\prime}\end{array}\right]\right\}$, and consider elements $\left[\begin{array}{l}c \\ d\end{array}\right]$ of the form

$$
\left[\begin{array}{l}
c^{\prime} \\
d^{\prime}
\end{array}\right]-q\left[\begin{array}{l}
a \\
b
\end{array}\right], \quad q \in R
$$

(c) Explain why the claim completes the proof.
(29) (Bonus). Can you generalize this proof strategy to $n \geq 2$?

A proof of Ash-Rudolph

The objective of the second lecture was a simplified proof of Ash-Rudolph's theorem following Church-Farb-Putman.

Theorem (Ash-Rudolph). Let R be a Euclidean ring and \mathbb{F} its field of fractions. Then the top homology of the associated Tits building $\widetilde{H}_{n-2}\left(\mathcal{T}_{n}(\mathbb{F})\right)$ is generated by integral apartment classes.
(30) Review the main argument of the lecture: use Quillen's lemma and Maazen's theorem to prove Ash-Rudolph's theorem.

