MASTERCLASS EXERCISES

JENNY WILSON, LECTURE 1

INTRODUCTION TO THE TITS BUILDINGS

Let \mathbb{F} be a field, and V an \mathbb{F} -vector space. Recall that the *Tits building* $\mathcal{T}(V)$ is the geometric realization of the poset of proper nonzero vector subspaces of V under inclusion. We sometimes write $\mathcal{T}_n(\mathbb{F})$ for $\mathcal{T}(\mathbb{F}^n)$.

With the following exercises, we can extend the definition of the Tits building to PIDs.

- (1) Let R be a PID, and $U \subseteq \mathbb{R}^n$ be an R-submodule. Show that the following conditions are equivalent. If these conditions hold, we say that U is *split* or that U is a *summand* of \mathbb{R}^n .
 - (i) There exist an R-submodule C such that $R^n = U \oplus C$.
 - (ii) There exists a basis for U that extends to a basis for \mathbb{R}^n .
 - (iii) Any basis for U extends to a basis for \mathbb{R}^n .
 - (iv) The quotient R^n/U is torsion-free.
- (2) Let R be a PID. An element $v = (r_1, r_2, ..., r_n) \in \mathbb{R}^n$ is called *unimodular* if the ideal generated by $(r_1, r_2, ..., r_n)$ is R. In other words, the gcd of $(r_1, r_2, ..., r_n)$ is a unit.
 - (a) Show that a nonzero element $v \in \mathbb{R}^n$ spans a direct summand of \mathbb{R}^n if and only if it is unimodular.
 - (b) Show that $v \in \mathbb{R}^n$ is an element of a basis for \mathbb{R}^n if and only if it is unimodular.
 - (c) Give an example of a PID R and two unimodular vectors in \mathbb{R}^n that can never both be elements of the same basis.

For R a PID and V a free R-module, we may further define $\mathcal{T}(V)$ to be the poset of proper nonzero summands of V under inclusion.

- (3) Let R be a PID, and let U, V be summands of \mathbb{R}^n .
 - (a) Show that $U \cap V$ is always a summand of \mathbb{R}^n .
 - (b) Show that U + V need not be a summand of \mathbb{R}^n .
- (4) Let $U \subseteq \mathbb{R}^n$ be a direct summand, and let $W \subseteq U$. Show that W is a summand of U if and only if it is a summand of \mathbb{R}^n .

In the next exercises we will that this ostensible generalizations of the Tits buildings to PIDs in fact reduces to the field case.

- (5) Let R be a PID and F(R) be its field of fractions.
 - (a) Show that there is a bijection between R-submodule summands of R^n and F(R)-vector subspaces of $F(R)^n$, given by the following correspondence. Identify $F(R)^n$ with $R^n \otimes_R F(R)$.

{summands of
$$\mathbb{R}^n$$
} \longleftrightarrow {subspaces of $F(\mathbb{R})^n$ }
 $U \longmapsto U \otimes_{\mathbb{R}} F(\mathbb{R})$
 $V \cap \mathbb{R}^n \longleftrightarrow V$

- (b) Verify that this bijection induces an isomorphism of posets of submodules under inclusion.
- (c) Conclude that $\mathcal{T}_n(R)$ can be canonically identified with $\mathcal{T}_n(F(R))$.

Date: June 24, 2021.

MASTERCLASS EXERCISES

COXETER COMPLEXES AND BUILDINGS

The Tits buildings, as the name suggests, are examples of *buildings*. In this exercise we will define a building and verify that the Tits buildings satisfy the axioms.

To define a building, we first need the notion of a Coxeter complex.

Definition (Coxeter system). A Coxeter system is a group W (the Coxeter group) along with a distinguished generating set $S = \{s_1, s_2, \ldots, s_n\} \subseteq W$ such that the corresponding presentation has the form

$$W = \langle s_1, s_2, \dots, s_n \mid (s_i s_j)^{m_{i,j}} = 1 \rangle, \qquad m_{i,i} = 1, \quad 2 \le m_{i,j} \le \infty \text{ for } i \ne j.$$

Coxeter groups are abstract generalizations of *reflection groups*. Notably for our purposes, the symmetric group S_{n+1} is a Coxeter group with generators the simple transpositions $s_i = (i \ i + 1)$ and associated presentation

$$S_{n+1} = \langle s_1, s_2, \dots, s_n \mid s_i^2, (s_i s_{i+1})^3, (s_i s_j)^2 \text{ for } |i-j| > 1 \rangle$$

Given a Coxeter system (W, S), a standard subgroup of W is any subgroup W_J generated by a subset J of S. A standard coset is a coset wW_J for $w \in W$ and W_J a standard coset.

Definition (Coxeter complex). Given a Coxeter system (W, S), consider the poset $P_{W,S}$ of proper standard cosets under reverse inclusion. One way to define the *Coxeter complex* $X_{W,S}$ associated to (W, S) is as follows. The *p*-simplices of $X_{W,S}$ are indexed by standard cosets wW_J with |J| = n - p - 1, and assembled in such a way that the geometric realization of $P_{W,S}$ is the barycentric subdivision of $X_{W,S}$. In other words, the poset of cells of $X_{W,S}$ under inclusion is precisely $P_{W,S}$.

- (6) (a) Sketch the Coxeter complex for the symmetric groups S_2 and S_3 .
 - (b) Describe the standard cosets in the symmetric group S_{n+1} .
 - (c) Show that the Coxeter complex of S_{n+1} can be identified with the flag complex of nonempty subsets of the set $\{1, 2, \ldots, n, n+1\}$.
 - (d) Show that the Coxeter complex of the symmetric group S_{n+1} can be identified with the boundary of a barycentrically-subdivided *n*-simplex. Conclude that the Coxeter complex is topologically a sphere S^{n-1} .

Definition (Building). A building is a simplicial complex Δ that can be written as a union of subcomplexes Σ , called *apartments*, that satisfy the following axioms.

(B0) Each apartment Σ is a Coxeter complex.

(B1) For any two simplices $A, B \in \Delta$, there is an apartment Σ containing both of them.

(B2) If Σ and Σ' are two apartments containing A and B, then there is an isomorphism $\Sigma \to \Sigma'$ fixing A and B pointwise.

Top-dimensional simplices are called *chambers*, and codimension-one simplices are *panels*.

Condition (B2) is equivalent to the following.

(B2') Let Σ and Σ' be two apartments containing a simplex C that is a chamber of Σ . Then there is an isomorphism $\Sigma \xrightarrow{\cong} \Sigma'$ fixing every simplex of $\Sigma \cap \Sigma'$.

Let V be a vector space over \mathbb{Q} . Recall that the *Tits buildings* $\mathcal{T}(V)$ is the geometric realization of the poset of proper nonzero vector subspaces of V.

Further recall that a frame for V is a decomposition $V = L_1 \oplus L_2 \oplus \cdots \oplus L_n$ of V as a direct sum of 1-dimensional subspaces L_i . For each frame $L = \{L_1, L_2, \cdots, L_n\}$ for V, we define an apartment A_L

to be the full subcomplex of $\mathcal{T}(V)$ on vertices corresponding to direct sums of all proper nonempty subsets of $\{L_1, L_2, \cdots, L_n\}$.

In the next exercise we will verify that the Tits building $\mathcal{T}(V)$, along with the system of apartments $\{A_L \mid L \text{ a frame for } V\}$, is a building.

- (7) (a) Suppose V is n-dimensional. Show that an apartment A_L is isomorphic to the Coxeter complex associated to S_n . Conclude that axiom (B0) holds.
 - (b) Given a flag $0 \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_p \subsetneq V$, let's say that frame $L = \{L_1, L_2, \cdots, L_n\}$ is *compatible* with this flag if every subspace V_i is a direct sum of lines L_j . Show that, given any two flags in V, there is a frame that is compatible with both of them. Use this result to conclude that **(B1)** holds.

(Despite being "just" elementary linear algebra, this exercise is not entirely trivial! See Abramenko–Brown "Buildings" Section 4.3.)

(c) Verify that axiom (**B2'**) holds. *Hint:* Given a chamber in Σ corresponding to a complete flag $0 \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_{n-1} \subsetneq V$, construct an explicit isomorphism to the Coxeter complex using the function

$$\phi: \Sigma \longrightarrow \{ \text{subsets of } [n] \} \\ U \longmapsto \{ i \mid \dim(U \cap V_i) < \dim(U \cap V_{i+1}) \}$$

Observe that this isomorphism depends only on the chamber and not on Σ .

SOLOMON-TITS

The goal of this section is to give a proof of the Solomon–Tits theorem, which states that the Tits building $\mathcal{T}_n(K)$ is homotopy equivalent to a wedge of spheres of dimension (n-2).

Fix a field K and a positive integer n. Recall that the Tits building $\mathcal{T}_n(K)$ is the geometric realization of the poset of proper nonzero subspaces of K^n under inclusion. Explicitly, $\mathcal{T}_n(K)$ is a simplicial complex defined as follows. The vertices of $\mathcal{T}_n(K)$ are proper nonzero subspaces of K^n . A collection of vertices span a simplex precisely when they form a flag.

- (8) Fix a field K. Verify that, when n = 1, the building $\mathcal{T}_n(K)$ is empty, and when n = 2, the building $\mathcal{T}_n(K)$ is a discrete set of points, that is, a wedge of 0-spheres.
- (9) Draw the Tits building for $K = \mathbb{Z}/2\mathbb{Z}$ and $n \leq 3$. Can you see explicitly that it is homotopy equivalent to a wedge of spheres?

To pove the Solomon–Tits theorem, will use a method sometimes called "discrete Morse theory". I first learned this proof from Bestvina's notes "PL Morse Theory".

Definition (Realizations and links). For a poset T, write |T| for its geometric realization. For $t \in T$, we write $Lk_T(t)$ for the link of t in T,

$$Lk_T(t) = \{ s \in T \mid s < t \text{ or } s > t \}.$$

We write $Lk_T^{\uparrow}(t)$ for the subposet

$$\operatorname{Lk}_T^{\uparrow}(t) = \{ s \in T \mid s > t \}$$

and we write $Lk_T^{\downarrow}(t)$ for the subposet

$$\operatorname{Lk}_{T}^{\downarrow}(t) = \{ s \in T \mid s < t \}.$$

(10) Verify that $|\mathrm{Lk}_T(t)| = |\mathrm{Lk}_T^{\uparrow}(t)|_{\mathrm{join}}^* |\mathrm{Lk}_T^{\downarrow}(t)|.$

The following result is our key lemma.

Lemma (Discrete Morse Theory). Let T be a poset with $T = X_0 \cup T_1 \cup \cdots \cup T_m$ as sets. Let $X_k = X_0 \cup T_1 \cup \cdots \cup T_k$. Suppose the following:

(i) $|X_0|$ is contractible.

(ii) For $i \ge 1$ then any pair $s, t \in T_i$ of distinct elements are not comparable.

(iii) For $i \geq 1$ and $t \in T_i$,

$$|\mathrm{Lk}_T(t) \cap X_{i-1}| \simeq \bigvee S^{d-1} \qquad \text{or} \qquad |\mathrm{Lk}_T(t) \cap X_{i-1}| \simeq *.$$

Then |T| is (d-1)-connected. In particular, if $|\operatorname{Lk}_T(t) \cap X_{i-1}| \simeq \bigvee S^{d-1}$ for at least one *i* and *t*, then |T| is homotopy equivalent to a wedge of *d*-spheres. Otherwise, |T| is contractible.

- (11) Prove the Discrete Morse Theory lemma.
- (12) Fix a field K and $n \ge 2$. Let T be the poset of nonzero proper subspaces of K^n , so $\mathcal{T}_n(K)$ is defined to be |T|. Assume by induction that $\mathcal{T}_m(K) \simeq \bigvee S^{m-2}$ for all m < n; we proved the base case in Exercise (8). Fix a line L in K^n .
 - Let X_0 be the subposet of T on vertices V such that $L \subseteq V$.
 - For i = 1, ..., n 1, let T_i be the set of subspaces V of K^n

$$T_i = \{ V \subseteq K^n \mid \dim(V) = i, \ L \not\subseteq V \}$$

- (a) Verify that $|X_0| \subseteq |T|$ is the star on the vertex L, and hence contractible.
- (b) Verify that for fixed i, distinct elements in T_i are not comparable.
- (c) Suppose $1 \le i \le (n-2)$. Show that, for $V \in T_i$, the subspace (V+L) is a cone point of $|\operatorname{Lk}_T(V) \cap X_{i-1}|$. (Why did we need the assumption $i \le (n-2)$?)
- (d) Verify that, for i = n 1 and $V \in T_i$,

$$|\operatorname{Lk}_T(V) \cap X_{i-1}| \simeq \bigvee S^{n-3}.$$

Hint: Compare $|\operatorname{Lk}_T(V) \cap X_{i-1}|$ to $\mathcal{T}_{n-1}(K)$.

(e) Use the Discrete Morse Theory lemma to conclude that $\mathcal{T}_n(K) \simeq \bigvee S^{n-2}$.

There are other elegant approaches to computing the homotopy type of $\mathcal{T}_n(K)$. For example, see Abramenko–Brown "Buildings" Section 4.12 for an approach using the theory of shellability. In principle, these proofs can also be used to describe a generating sets for the reduced homology of $\mathcal{T}_n(K)$.

THE SHARBLY RESOLUTION

Let R be a PID, and let $St_n(R)$ be the associated Steinberg module,

$$\operatorname{St}_n(R) := \widetilde{H}_{n-2}(\mathcal{T}_n(R);\mathbb{Z}).$$

By Exercise 5, we can identify $\mathcal{T}_n(R)$ with $\mathcal{T}_n(\mathbb{F})$, where \mathbb{F} is the field of fractions of R.

In this section we will construct a resolution of the Steinberg module due to Lee–Szczarba (1976), which has since been named the *Sharbly resolution*. To quote Lee–Szczarba (Section 4):

In theory, one should be able to use [the Sharbly resolution] to compute the groups $H_q(SL_n(R); St_n(R))$ for $q \ge 0$. However, because of the size of [the terms of the resolution], this is impractical except when q = 0.

The proof of the Sharbly resolution is both a significant historical development, and also an instructive application of some of the techniques of the field. The construction will use the *Acyclic Covering*

Lemma (See Brown "Cohomology of Groups" Section VII Lemma 4.4). Let X be a CW complex, and suppose X is the union of a family of nonempty subcomplexes

$$X = \bigcup_{\alpha \in J} X_{\alpha}$$

The *nerve* N of the family X_{α} is the abstract simplicial complex with vertex set J and such that a finite subset $\sigma \subseteq J$ spans a simplex if and only if the intersection $X_{\sigma} = \bigcap_{\alpha \in \sigma} X_{\alpha}$ is nonempty.

Lemma (Acyclic Covering Lemma). Suppose a CW complex X is a union of subcomplexes X_{α} such that every non-empty intersection $X_{\alpha_0} \cap X_{\alpha_1} \cap \cdots \cap X_{\alpha_p}$ is acyclic. Then $H_*(X) \cong H_*(N)$, where N is the nerve of the cover.

(13) (Bonus). Use the Mayer–Vietoris spectral sequence to prove the Acyclic Covering Lemma. See Brown "Cohomology of Groups" Section VII.4.

Let R be a PID. Recall that an element $v = (r_1, r_2, \ldots, r_n) \in \mathbb{R}^n$ is called *unimodular* if the ideal generated by (r_1, r_2, \ldots, r_n) is R.

$$\mathscr{S}_q = \mathscr{S}_q(R^n) = \{ (n+q) \times n \text{ matrices } A = (a_{i,j}) \text{ over } R \mid (a_{i,1}, \dots, a_{i,n}) \text{ is unimodular for all } i \}$$
$$\mathscr{P}_q = \mathscr{P}_q(R^n) = \{ A \in \mathscr{S}_q \mid \text{ each } n \times n \text{ submatrix has determinant } 0 \}$$

These sets have actions of $\operatorname{GL}_n(R)$ by right multiplication. Let $C(\mathscr{S}_q)$ and $C(\mathscr{P}_q)$ denote the free abelian groups on \mathscr{S}_q and \mathscr{P}_q , respectively, and let $C_q(R^n) = C(\mathscr{S}_q)/C(\mathscr{P}_q)$ be the quotient; it is a right $\mathbb{Z}[\operatorname{GL}_n(R)]$ -module.

Our goal is to prove the following, Lee–Szczarba Theorem 3.1.

Theorem (The Sharbly resolution). There is an epimorphism $\phi : C_0(\mathbb{R}^n) \to \operatorname{St}_n(\mathbb{R})$ of right $\mathbb{Z}[\operatorname{GL}_n(\mathbb{R})]$ -modules so that

$$\longrightarrow C_q(\mathbb{R}^n) \longrightarrow C_{q-1}(\mathbb{R}^n) \longrightarrow \cdots \longrightarrow C_0(\mathbb{R}^n) \xrightarrow{\phi} \operatorname{St}_n(\mathbb{R}) \longrightarrow 0$$

is a free resolution of $\operatorname{St}_n(R)$ by $\mathbb{Z}[\operatorname{GL}_n(R)]$ -modules.

- (14) (a) Let K be the simplicial complex whose vertices are the unimodular elements of \mathbb{R}^n , and whose simplices are all finite nonempty subsets of vertices. Show that K is contractible.
 - (b) Use the long exact sequence of a pair to show that, for a subcomplex $L \subseteq K$,

$$H_q(K,L) \cong H_{q-1}(L).$$

(c) Let $L \subseteq K$ be the subcomplex consisting of all simplices with the property that all of their vertices lie in a proper direct summand of \mathbb{R}^n . Let $\{H_i \mid i \in I\}$ be the set of direct summands of \mathbb{R}^n of rank (n-1). Let K_i be the full subcomplex of L with vertices lying in H_i . Show that $\{K_i \mid i \in I\}$ is an acyclic covering of L in the sense of the Acyclic Covering Lemma.

Hint: First argue that, since R is a PID, a nonempty intersection of summands H_i must be a direct summand of R^n isomorphic to R^r for some 0 < r < n.

- (d) Let N be the nerve of the cover $\{K_i \mid i \in I\}$. Use the Acyclic Covering Lemma to deduce that $H_q(L) \cong H_q(N)$ for all $q \ge 0$.
- (e) Recall that \mathbb{F} denotes the field of fractions of R. Let $\{W_j \mid j \in J\}$ denote the set of hyperplanes in \mathbb{F}^n . Let T_j be the subcomplex of the Tits building $\mathcal{T}_n(\mathbb{F})$ consisting of all simplices with W_j as a vertex. Show that $\{T_j \mid j \in J\}$ is an acyclic covering of L in the sense of the Acyclic Covering Lemma.
- (f) Let N be the nerve of the cover $\{T_j \mid j \in J\}$. Use the Acyclic Covering Lemma to deduce that $H_q(\mathcal{T}_n(\mathbb{F})) \cong H_q(\tilde{N})$ for all $q \ge 0$.

(g) Show that the mapping

{summands of
$$\mathbb{R}^n$$
} \longrightarrow {subspaces of $\mathbb{F}^n \cong \mathbb{R}^n \otimes_{\mathbb{R}} \mathbb{F}$ }
 $H \longmapsto H \otimes_{\mathbb{R}} \mathbb{F}$

defines a simplicial isomorphism of N onto \tilde{N} .

(h) We have proved the following isomorphisms. Verify that they are $GL_n(R)$ -equivariant.

$$H_q(K, L) \cong H_{q-1}(L)$$
$$\cong \widetilde{H}_{q-1}(N)$$
$$\cong \widetilde{H}_{q-1}(\widetilde{N})$$
$$\cong \widetilde{H}_{q-1}(\mathcal{T}_n(\mathbb{F}))$$

(i) Verify that the (n-2)-skeleton of L coincides with the (n-2)-skeleton of K, so

$$C_q(K,L) = 0 \qquad \text{for } q \le n-2.$$

(j) Using the Solomon–Tits result that $\mathcal{T}_n(\mathbb{F}) \simeq \bigvee S^{n-2}$, deduce that there is an exact sequence

$$\cdots \longrightarrow C_{q+n}(K,L) \longrightarrow C_{q+n-1}(K,L) \longrightarrow \cdots \longrightarrow C_{n-1}(K,L) \longrightarrow \operatorname{St}_n(R) \longrightarrow 0.$$

(k) Show that there are $GL_n(R)$ -equivariant isomorphisms of chain complexes

$$C_{q+n-1}(K) \cong C(\mathscr{S}_q)$$
$$C_{q+n-1}(L) \cong C(\mathscr{P}_q)$$
$$C_{q+n-1}(K,L) \cong C_q(R^n)$$

- (1) Conclude the existence of the Sharbly resolution.
- (m) Show that differentials in the Sharbly resolution are induced by the map

$$\mathscr{S}_q \longrightarrow \mathscr{S}_{q-1}$$

 $A \longmapsto \sum (-1)^i d_i(A)$

where d_i is the map that deletes the i^{th} row of the matrix A.

- (15) Prove that the Sharbly resolution is free.
 - *Hint:* First verify that $\operatorname{GL}_n(R)$ acts freely on the set of $(n+q) \times n$ matrices A satisfying
 - each row of A is unimodular,
 - some $(n \times n)$ -submatrix of A has non-vanishing determinant.
- (16) Give a geometric interpretation of the map $\phi : C_0(\mathbb{R}^n) \to \operatorname{St}_n(\mathbb{R})$. Conclude that the Steinberg module is generated by apartment classes.

Let R be a Euclidean ring with a multiplicative Euclidean norm. Using the Sharbly resolution, Lee-Szczarba went on to prove that the $SL_n(R)$ -coinvariants of $C_0(R^n)$ vanish, which implies that

$$H_0(\mathrm{SL}_n(R); \mathrm{St}_n(R)) = 0.$$

By virtual Bieri–Eckmann duality, this then implies that the rational cohomology of $SL_n(R)$ vanishes in its virtual cohomological dimension.

(17) (Bonus). Let R be a Euclidean ring with a multiplicative Euclidean norm. Prove directly that $SL_n(R)$ -coinvariants of $C_0(R^n)$ vanish. See Lee-Szczarba Theorem 4.1.

ASH-RUDOLPH

Let $\mathcal{T}_n(\mathbb{Q})$ be the Tits building on the rational vector space \mathbb{Q}^n . Let A_L denote the apartment associated to a frame $L = \{L_1, L_2, \ldots, L_n\}$ for \mathbb{Q}^n . Recall the following.

Definition (Integral apartment). Let $L = \{L_1, L_2, ..., L_n\}$. The frame L (and the apartment A_L) are called *integral* if

$$(L_1 \cap \mathbb{Z}^n) \oplus (L_2 \cap \mathbb{Z}^n) \oplus \cdots \oplus (L_n \cap \mathbb{Z}^n) = \mathbb{Z}^n.$$

(18) Consider \mathbb{Q}^2 . Verify that the apartment corresponding to the frame

$$\left\{\mathbb{Q}\begin{bmatrix}1\\0\end{bmatrix},\mathbb{Q}\begin{bmatrix}0\\1\end{bmatrix}\right\}$$

is integral, but the apartment corresponding to the frame

$$\left\{\mathbb{Q}\begin{bmatrix}2\\1\end{bmatrix},\mathbb{Q}\begin{bmatrix}0\\1\end{bmatrix}\right\}$$

is not integral.

(19) Develop a determinant condition for verifying whether or not a frame is integral.

Let $L = \{L_1, L_2, \ldots, L_n\}$ be a frame, and let A_L be the associated apartment in the Tits building. Recall from Exercises (6) and (7) that A_L is an (n-2)-sphere, specifically, it is simplicially isomorphic to the barycentric subdivision of the boundary of an (n-1)-simplex.

- (20) (a) A permutation $\sigma \in S_n$ acts on L by $L_i \mapsto L_{\sigma(i)}$. Show that σ induces a simplicial isomorphism $A_L \to A_L$. Show that this isomorphism is orientation-preserving if σ is even, and orientation-reversing if σ is odd.
 - (b) The apartment A_L represents a homology class [A_L] ∈ H_{n-2}(T_n(Q)). Explain why, to make the sign of [A_L] well-defined, we must order the frame L up to sign. Moreover, the symmetric group S_n ⊆ GL_n(Z) acts on [A_L] by sign. (Some sources leave L unordered and [A_L] only defined up to sign).

Ash–Ruldolph (1979) proved the following.

Theorem (Ash–Rudolph). The homology group $H_{n-2}(\mathcal{T}_n(\mathbb{Q}))$ is generated by integral apartment classes

$$\left\{ \begin{bmatrix} A_L \end{bmatrix} \middle| \begin{array}{c} L \text{ an integral frame for } \mathbb{Q}^n, \\ \text{ordered up to sign} \end{array} \right\}.$$

(21) (a) Find an element of $SL_n(\mathbb{Z})$ that interchanges the two lines

$$\left\{ \mathbb{Q} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbb{Q} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

(b) Show that there is **no** matrix in $SL_n(\mathbb{Z})$ that interchanges the two lines

$$\left\{ \mathbb{Q} \begin{bmatrix} 2\\1 \end{bmatrix}, \mathbb{Q} \begin{bmatrix} 0\\1 \end{bmatrix} \right\}.$$

(c) Explain why this non-existence result was an obstacle in our first lecture to computing $H_0(\mathrm{SL}_n(\mathbb{Z}); \mathrm{St}_n(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{Q})$, and explain why it is resolved by Ash–Rudolph.

(22) (Bonus). Again consider \mathbb{Q}^2 . Write the apartment class corresponding to the frame

$$\left\{\mathbb{Q}\begin{bmatrix}2\\1\end{bmatrix},\mathbb{Q}\begin{bmatrix}0\\1\end{bmatrix}\right\}$$

as a linear combination of integral apartment classes.

This theorem of Ash–Rudolph offers a simpler proof of the earlier theorem of Lee–Szczarba.

(23) (a) Let C_0 be the free abelian group on the symbols [L] with $L = \{L_0, L_1, \ldots, L_n\}$ a frame for \mathbb{R}^n , L ordered up to sign, subject to the relation

$$\sigma \cdot [L] = (-1)^{\operatorname{sign}(\sigma)}[L] \quad \text{for } \sigma \in S_n.$$

Show that the $SL_n(\mathbb{Z})$ -coinvariants of C_0 vanish.

- (b) Deduce that $H_0(\mathrm{SL}_n(\mathbb{Z}); \mathrm{St}_n(\mathbb{Q})) = 0.$
- (c) Deduce that $H^{vcd}(\mathrm{SL}_n(\mathbb{Z});\mathbb{Q}) = 0.$

JENNY WILSON, LECTURE 2

SIMPLICIAL METHODS AND A LEMMA OF QUILLEN

Recall the definition of the link of a simplex in a simplicial complex.

Definition (Link). Let X be a simplicial complex, and let $\sigma = [s_0, \ldots, s_p]$ be a simplex in X. The *link* Link_X(σ) of σ is the subcomplex of X of simplices

 $\{[t_0, \dots, t_q] \mid [s_0, \dots, s_p, t_0, \dots, t_q] \text{ is a simplex of } X\}.$

(24) (Bonus). What can you say about links of simplices in the Tits buildings $\mathcal{T}_n(\mathbb{F})$?

The following is Quillen's definition of a Cohen–Macaulay simplicial complex. We caution that this definition is stronger than other definitions of Cohen–Macaulay appearing in the literature.

Definition (CM complex). A *d*-dimensional simplicial complex X is Cohen-Macaulay (CM) if (i) X is (d-1)-connected, (ii) Link_X(σ) is $(d-2-\dim(\sigma))$ -connected for every simplex σ in X.

(We may simplify the statement of the definition if we consider the empty set a (-1)-simplex, and X its link).

- (25) Verify that the following simplicial complexes are CM.
 - (a) an *n*-simplex, and its barycentric subdivision
 - (b) the boundary of an n-simplex, and its barycentric subdivision
 - (c) (Bonus) the join of CM simplicial complexes

In Church–Ellenberg–Farb's proof of Ash–Rudolph's theorem, we used the following lemma. The lemma follows from Quillen's paper "Homotopy properties of the poset of nontrivial *p*-subgroups of a group," Theorem 9.1 and Corollary 9.7.

For a poset X, let |X| denote its geometric realization. A map $f: X \to Y$ of posets is strictly increasing if $f(x_1) > f(x_2)$ for all $x_1 > x_2$.

Lemma (Quillen) Let $f : X \to Y$ be a strictly increasing map of posets. Assume that |Y| is a *d*-dimensional CM complex. For $y \in Y$, let f_y denote the subposet

$$f_y = \{x \in X \mid f(x) \le y\} \subseteq X$$

and further assume that $|f_y|$ is CM for all y. Then |X| is CM, and $f_*: \widetilde{H}_d(|X|) \to \widetilde{H}_d(|Y|)$ surjects.

(26) (Bonus). Prove Quillen's lemma. *Hint:* See Quillen's paper.

Maazen's theorem for n = 2

Definition (Complex of partial bases). Fix a PID R. Let $B_n(R)$ denote the complex of partial bases in \mathbb{R}^n . Its vertices are primitive elements v_0 of \mathbb{R}^n , and vertices $\{v_0, \ldots, v_p\}$ span a p-simplex precisely when they are a subset of a basis for \mathbb{R}^n (possibly equal to a basis of \mathbb{R}^n).

(27) Fix a PID R. Let $P_n(R)$ denote the poset of partial bases of R^n under inclusion. Show that the geometric realization $|P_n(R)|$ is equal to the barycentric subdivision of $B_n(R)$.

The goal of this section is to prove the following result of Maazen in the case n = 2.

Theorem (Maazen). Let R be a Euclidean domain. Let $P_n(R)$ denote the poset of partial bases of R^n under inclusion. Then $|P_n(R)|$ is Cohen–Macaulay.

- (28) Fix a Euclidean ring R with norm $|\cdot|$, and let n = 2.
 - (a) Explain why, to prove Maazen's theorem in the case n = 2, it suffices to show that the graph $|P_2(R)|$ is connected, equivalently, that $B_2(R)$ is connected. Thus given a vertex indexed by a primitive vector $\begin{bmatrix} a \\ b \end{bmatrix}$ in R^2 , it suffices to find a path to the vertex $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
 - (b) Prove the following claim: Given a primitive vector $\begin{bmatrix} a \\ b \end{bmatrix}$ in \mathbb{R}^2 with |b| > 0, there is a basis

$$\left\lfloor \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \right\}$$

of \mathbb{R}^2 with |d| < |b|.

Hint: First choose any partial basis $\left\{ \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c' \\ d' \end{bmatrix} \right\}$, and consider elements $\begin{bmatrix} c \\ d \end{bmatrix}$ of the form $\begin{bmatrix} c' \\ d' \end{bmatrix} - q \begin{bmatrix} a \\ b \end{bmatrix}, \qquad q \in R.$

- (c) Explain why the claim completes the proof.
- (29) (Bonus). Can you generalize this proof strategy to $n \ge 2$?

A proof of Ash-Rudolph

The objective of the second lecture was a simplified proof of Ash–Rudolph's theorem following Church–Farb–Putman.

Theorem (Ash–Rudolph). Let R be a Euclidean ring and \mathbb{F} its field of fractions. Then the top homology of the associated Tits building $\widetilde{H}_{n-2}(\mathcal{T}_n(\mathbb{F}))$ is generated by *integral* apartment classes.

(30) Review the main argument of the lecture: use Quillen's lemma and Maazen's theorem to prove Ash–Rudolph's theorem.