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Abstract

In this paper we study the characters of sequences of representations of any
of the three families of classical Weyl groups W,,: the symmetric groups, the
signed permutation groups (hyperoctahedral groups), or the even-signed per-
mutation groups. Our results extend work of Church, Ellenberg, Farb, and
Nagpal [CEF12], [CEFN14] on the symmetric groups. We use the concept of
an Flyy—module, an algebraic object that encodes the data of a sequence of W,,—
representations with maps between them, defined in the author’s recent work
[Wil14].

We show that if a sequence {V,,} of W, —representations has the structure
of a finitely generated Fl,y—module, then there are substantial constraints on the
growth of the sequence and the structure of the characters: for n large, the di-
mension of V,, is equal to a polynomial in n, and the characters of V,, are given
by a character polynomial in signed-cycle-counting class functions, independent
of n. We determine bounds the degrees of these polynomials.

We continue to develop the theory of FI)y—modules, and we apply this the-
ory to obtain new results about a number of sequences associated to the clas-
sical Weyl groups: the cohomology of complements of classical Coxeter hyper-
plane arrangements, and the cohomology of the pure string motion groups (the
groups of symmetric automorphisms of the free group).
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1 Introduction

In recent work [Wil14] we developed the theory of FI,y—modules to study sequences
of representations of any of the three families of classical Weyl groups: the sym-
metric groups S, the hyperoctahedral groups (signed permutation groups) B,, =
(Z)2Z)" % Sy, and their index-two subgroups of even-signed permutation groups
D,,. The results generalize work of Church, Ellenberg, Farb, and Nagpal [CEFN14,
CEF12] on sequences of S,,—representations.

Let W, denote one of these families. Many naturally occurring sequences of
W,,—representations {V,,}, with maps V,, — V,,4; carry the structure of an finitely
generated Flyy—module, an elementary and often easily established condition which
we define in detail below.

We analyze two such families of sequences in Section 5. The first is the coho-
mology of the pure string motion groups PX,,, groups related to the pure braid
groups. The group PY,, can also be identified with the group of pure symmetric
automorphisms of the free group F,,. The second family is the cohomology of the
(complexified) complements .#(n) of the hyperplanes fixed by reflections in the
Coxeter groups W,,. The hyperplane complements .#)y(n) are objects of classical
and current mathematical interest.

In this paper we develop general results on the characters of finitely generated
FIy)y—modules over characteristic zero. We prove that these characters admit very
specific descriptions: they are (for n large) given by character polynomials, polynomi-
als in signed-cycle-counting class functions, as described in Section 4.
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Theorem 4.6. (Finitely generated FI),—modules have character polynomials). Let
V' be an Flyy—module over characteristic zero finitely generated in degree < d. Let xy,
denote the character of the W,—representation V,. Then there exists a unique character
polynomial Fy of degree at most d such that Fy (o) = xv, (o) for all o € W,, for all n
sufficiently large.

Church-Ellenberg—Farb proved this result in type A [CEF12, Theorem 2.67]. Theo-
rem 4.16 gives a more detailed statement of the result in type B/C and D, including
bounds on the stable range.

These character polynomials provide a description of the characters of V;, that
is independent of n, and moreover the character polynomials’ restrictive structure
reflects the strong constraints on the V,,—subrepresentations that can appear in a
finitely generated FI,y—module.

One immediate consequence of the existence of character polynomials is that
the dimensions dim(V,,) are (for n large) equal to a polynomial in n. We prove in
Theorem 4.20 that this same phenomenon holds for sequences of representations
{V..}, over arbitrary fields when V;, admits a finitely generated FI)y-module struc-
ture. Since W, —representations over positive characteristic need not be completely
reducible, the study of these sequences is more subtle — but Theorem 4.20 nonethe-
less offers some control over their growth.

Theorem 4.20. (Polynomial growth of dimension over arbitrary fields). Let k be
any field, and let V be a finitely generated FI,y—module over k. Then there exists an integer-
valued polynomial P(T') € Q[T] such that

dim(V,) = P(n)  for all n sufficiently large.

Theorem 4.20 is proved in type A by Church-Ellenberg-Farb—Nagpal [CEFN14,
Theorem 1.2].

These stability results for FI)y—modules extends our earlier work [Will4]. We
proved that if an FI,y—-module over characteristic zero is finitely generated, the de-
compositions of the representations V;, into irreducible subrepresentations are in
some sense eventually constant in n: these sequences are uniformly representation
stable as defined by Church—Farb [CF13]. See Section 2.2 for a complete definition.

In this paper we introduce Flyyf—-modules, a subclass of FI,y—modules with addi-
tional symmetries that allow us to deduce even stronger restrictions on the structure
of the underlying sequence of representations; see Section 3.

Examples of sequences of W,,—representations with finitely generated FI,,-module
and FIyyf-module structures are prevalent throughout the fields of geometry, topol-
ogy, algebra, and combinatorics. We establish this structure in two examples: the



cohomology of the pure string motion groups PX,, (Section 5.1) and the cohomol-
ogy of the hyperplane complements .#)y(n) (Section 5.2). Theorem 1.1 summarizes
our results.

Theorem 1.1. Let W, denote Sy, By, or D,,. Let X,, denote either the pure string motion
groups P, or the (complexified) complements .4y (n) of the reflecting hyperplanes of W,.
Then in each degree m the sequence { H™ (X,,; Q) },, is an Flyy—module finitely generated in
degree < 2m. We show

o The sequence H™(X,,; Q) is uniformly representation stable, stabilizing for n > 4m.

e For all values of n, the characters of H™(X,;Q) are given by a unique character
polynomial of degree at most 2m.

These and other results for PY,, and .#)y(n) are described in detail in Section 5.

The theory of FI,y—modules derives much of its strength from the extra algebraic
structure provided to these sequences of W, -representations. In this framework
each sequence {V}, },, is encoded as a single object, an FI)y—module, in a category that
closely parallels the category of modules over a ring. In Section 2.3 we review the
structure of maps, presentations, direct sums, and tensor products of FIyy-modules.
We proved that FlI,y—modules over Noetherian rings are Noetherian [Wil14, Section
4.3]; see Section 2.3.2. We developed induction and restriction operations between
the three families of groups [Will4, Sections 3.5 and 3.6]. These operations are re-
viewed in Section 2.3.4.

In our previous work [Will4, Section 5.2] we gave an application analogous to
Murnaghan’s classical theorem for Kronecker coefficients [Mur38], a stability theo-
rem concerning tensor products of S,,—representations. We showed that type B/C
and D versions of Murnaghan'’s result follow readily from the FI)y—module theory
[Wil14, Theorem 5.3 and Corollary 5.4]. These stability results have simple inter-
pretations in this FIyy—module context: tensor products of finitely generated FI,—
modules are themselves finitely generated.

The theory of Fl)y—modules gives a conceptual foundation and a language to
describe stability phenomena in sequences of W, —representations such as these.

1.1 FI,y—modules and finite generation

Definition 1.2. (The Category FI,y). Here we will define the three categories FI4 C
FIp C Flgc, denoted generically by FI,y. Consider the category whose objects are &
and for each n € N the finitesetn = {1, —1,2,-2,...,n, —n}, and whose morphisms
are all injective maps. We define FIy to be the smallest subcategory containing the
morphisms W,, C End(n) and the canonical inclusion maps I,, : n < (n + 1).



In each case, the endomorphisms End(n) of Flyy are precisely the Weyl group
W,. The category Fl,4 is equivalent to the category of all finite sets and injective
maps, denoted FI by [CEF12]. It turns out that for n # m, the set of morphisms
m — n in FIp and Flg¢ are the same; see [Will14, Remark 3.1].

A description of each category is given in Table 1.

Category | Objects Morphisms
Flgc n={+1,£2,...,£n} | {injections f:m — n | f(—a) = —f(a) YVa € m}
0=9g End(n) = B,
Flp n={+1,£2,...,£n} | {injections f:m —» n | f(—a) = —f(a) YVa € m;
0=0 isomorphisms must reverse an even number of signs }
End(n) = D,
Fla n={+1,£2,...,4n} | {injections f:m — n| f(—a) = —f(a) Va € m; f preserves signs}
0=0 End(n) = S,
Table 1: The Categories FIy
For m < n we denote by I, ,, the canonical inclusion {+1, ..., +m} — {£1,...,£n}

and abbreviate I, := I, (,11)-

Definition 1.3. (FI,-module and FI,-module maps). An Flyy—module V over a
commutative ring & is a (covariant) functor

V : Flyy — k-Mod

from FIyy to the category of k—modules. We denote V,, := V(n) and f. := V(f).
FI,—modules are precisely the FI-modules studied in [CEF12, CEFN14].
A co—Flyy—module over k is a functor from the dual category

FI%%, — k-Mod.

A map of Flyy—modules F' : V. — W is a natural transformation, that is, a se-
quence of maps F;, : V,, = W,, that commute with the action of the FI)y morphisms.
FIyy—module injections, quotients, kernels, cokernels, direct sums, etc, are defined
pointwise.



Definition 1.4. (Finite generation, Degree of generation). Let V' be an FI,y—module.
Given a subset S C []>°,V,,, the sub-FIyy—module generated by S is the smallest
sub-FI)y—module U of V' containing S. S is a generating set for U: the images of
these elements under the Flyy morphisms span each k[W,]-module U,,.

An Flyy—module V is finitely generated if it has a finite generating set, and V' is
generated in degree < d if it has a generating set contained in Hi:o | 2%

Examples of FI,y—modules. To illustrate this concept we give some first
examples of FIyy—modules over Q. Fix the Weyl group family W, to be S,,, D,,, or
B,,. To specify the Fl,y—module structure on a sequence {V,, }, it suffices to state the
Wy—actions and the maps (I,)« : V5, = Vj,41. associated to the natural inclusions I,,.

Example 1.5. The following are FIyy—-modules.

1. Example: Trivial representations. For n > 0 let V;, = Q be the trivial W,,—
representation with isomorphisms (I,,)« : V;, = V,41. These spaces form an
FIyy—module with a single generator in degree 0.

2. Example: Signed permutation matrices. The groups D,, and B,, are canoni-
cally represented by n x n signed permutation matrices, that is, generalized per-
mutation matrices with nonzero entries equal to 1 or —1. Throughout Example
1.5 we let Q" denote the representation of S,,, Dy, or B, by (signed) permu-
tation matrices. The representations Vp = 0 and V,, = Q" with their natural
inclusions form an FIy—module finitely generated in degree 1.

3. Example: j-fold powers. For any integer j, the j-fold tensor power, exterior
power, and symmetric power on Q" each form an FI)y—module finitely gener-
ated in degree j. More generally, composing any FlI,y—module V' with another
functor k-Mod — k-Mod will yield a new FIy—module.

4. Example: Represented functors Ny (m). For fixed integer m > 0, the se-
quence of k-modules

Mw(m)n =k [HOD’IFIW (m, n)]

form an Fly-module, with FI), morphisms acting on basis elements ey, f €
Homgy,,, (m, n) by postcomposition. These are in a sense the “free” FIy—modules;
see Definition 2.3.

5. Example: The FIyy-modules M)y (U). Fix an integer d and a Wy-representation
U. Let Q denote the trivial W,,_s-representation. Let U X QQ denote the (W X



W, _q)-representation given by the external tensor product of U and Q. Define

Mo (W), 0, n<d
w(W)n 1= Indjy ,,  URQ, n>d

Then there are induced maps Mw (U), — M (U),+1 giving this sequence the
structure of an Fly—module finitely generated in degree d. Specifically, the
natural inclusion of (Wy x W,,_q)-representations
Wh, Wh
UKQ — Reswdiﬁ/vnidlndwd;%nﬂidU XQ

— Wh, Wn+1 Wn+1
= Resy," )y, _ Res)” Indwdanﬂ,dU XQ

and the universal property of induction give W, -equivariant maps

Wi, Whn Whn
IndwdanidU XQ — Reswn+1 Indwd;/vnﬂ_dU X Q,
MWTU)WL Mw (U)nt1

which define the FI)y—module structure on My (U). An alternate, equivalent
description of My (U) is given in Definition 2.3.

Taking d = 0 and U the trivial representation QQ, we recover Example 1.5.1.
Taking d = 1 and U = Q! recovers Example 1.5.2. For any d, taking U to be
the regular representation k[)Vgy| recovers Example 1.5.4. The FI)y-modules
My (U) are discussed in Section 2.3.1.

. Example: Zero maps. Let {V},} be any sequence of non-zero rational W,,—
representations, and and let (I,,). be the zero maps. These form an Fly—
module that is infinitely generated, with infinite degree of generation.

. Example: Torsion and truncated FI,y—modules. Define FI}y—modules V and
U by

Q", with (I,). the natural inclusions, n < 20
Vi, :=
0, n>20

g 0. n<20
"1 Q", with (I,,), the natural inclusions, n > 20

Then the “torsion” Flyy-module V is finitely generated in degree 1, and the
“truncated” FIyy-module U is finitely generated in degree 20.

In contrast to Example 1.5, the sequence of alternating representations and the

sequence of regular representations Q[W,], each with their canonical inclusions, do
not form Flyy—modules; see [Wil14, Examples 3.5 and 3.6].

7



1.2 Character polynomials in type B/C and D

Let k£ be a field of characteristic zero. One of our main results is that the sequence
of characters of a finitely generated FI)y—-module over k is, for n large, equal to a
character polynomial which does not depend on n. This was proven for symmetric
groups in [CEF12, Theorem 2.67], and here we extend these results to the groups D,
and B,,.

Character polynomials for the symmetric groups date back to Murnaghan [Mur51]
and Specht [Spe60]; they are described in Macdonald [Mac79, 1.7.14]. In Section 4
we introduce character polynomials for the groups B,, and D,,, in two families of
signed variables. We use the classical results for S,, to derive formulas for the char-
acter polynomials of irreducible B,-representations (Theorem 4.11), and use these
formulas to study the characters of FI,y—modules in type B/C and D.

Conjugacy classes of the hyperoctahedral group are classified by signed cycle type,
see Section 2.1.2 for a description. We define the functions X,, Y, on [[>2 , B, such
that

X, (w) is the number of positive r—cycles in w,

Y, (w) is the number of negative r—cycles in w.

The functions X, Y, are algebraically independent as class functions on [[7 B,
and so they form a polynomial ring k[X1,Y], X2, Ys,...] whose elements span the
class functions on B,, for each n > 0.

We prove that the sequence of characters of {V},} associated to any finitely gen-
erated FIpc—module or FIp-module V over a field of characteristic zero are equal
to a unique element of k[ X, Y1, X, Y5, .. | for all n sufficiently large.

Example 1.6. (Signed permutation matrices: A first example of a character polyno-
mial). As an elementary example of a sequence of B,,—representations described by
a character polynomial, consider the canonical action of the hyperoctahedral groups
B, on the vector space Q" by signed permutation matrices. The trace of a signed
permutation matrix o is

Tr(o) = # {1’s on the diagonal of 0} — # {(—1)’s on the diagonal of o}
= # { positive one cycles of 0} — # { negative one cycles of o}
= Xi(0) = Yi(0)

and so the characters x;, of this sequence are given by the function x,, = X; —Y; for
all values of n.

The group D,, is canonically realized as the subgroup of this signed permutation
matrix group comprising those matrices with an even number of entries equal to
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(—1). The character of this representation is the restriction of the character y,, to the
subgroup D,, C B,,, and so again this sequence of characters is equal to the character
polynomial x,, = X; — Y7 for all values of n.

Conjugacy classes of the groups D,, C B,, are not fully classified by their signed
cycle type, due to the existence of certain "split’ classes when n is even; see Sec-
tion 2.1.3 for details. The functions {X,,Y,} therefore do not span the space of class
functions on any group D,, with n even. We prove, however, that when a sequence
of representations {V,,} of D,, has the structure of a finitely generated FIp-module,
for n large the characters depend only on the signed cycle type of the classes. Re-
markably, the characters associated to {V,,} are, for n large, also equal to a character
polynomial independent of n.

Theorem 4.16. (Characters of finitely generated FI,,—modules are eventually poly-
nomial). Let k be a field of characteristic zero. Suppose that V' is a finitely generated FIpc—
module with weight < d and stability degree < s, or, alternatively, suppose that V is a
finitely generated FIp—module with weight < d such that Ind5° V has stability degree < s.
In either case, there is a unique polynomial

Fy € k[X1,Y1, X0, Y5, .. ],

independent of n, such that the character of W,, on V,, is given by Fy for all n > s+ d. The
polynomial Fy has degree < d, with deg(X;) =deg(Y;) = i.

Weight and stability degree are defined in Sections 2.3.5 and 2.3.6; these quantities
are always finite for finitely generated FI,y—-modules and associated induced FI,y—
modules.

Theorem 4.16 generalizes the result of Church-Ellenberg-Farb [CEF12, Theorem
2.67] that the characters of finitely generated FI 4—module are, for n sufficiently large,
given by a character polynomial in the class functions X, on ]_[;;O:O S, that takes a
permutation o and returns the number of r—cycles in its cycle type.

In our applications, it remains an open problem to compute the character poly-
nomials in all but a few small degrees. Since we can often establish explicit upper
bounds on the degrees and stable ranges of these polynomials, the problem is much
more tractable: to find the character polynomials — and so determine the characters
for all values of n — it is enough to compute the characters for finitely many specific
values of n.

Eventually polynomial dimensions.  Suppose that V is a finitely generated FI,y—
module with character polynomial Fy . For each n in the stable range, the dimension
dim(V,,) is given by Fy/(n,0,0,0,...), the value of the character polynomial on the
identity element in WV,,. This has the immediate consequence:
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Corollary 4.17. (Polynomial growth of dimension). Let V' be an FI,y—module over a
field of characteristic zero, and suppose V' is finitely generated in degree < d. Then for large
n, dim(V,,) is equal to a polynomial in n of degree at most d. Equality holds for n in the
stable range given in Theorem 4.16.

Although our results on character polynomials in general hold only over fields
of characteristic zero, this “eventually polynomial” growth of dimension holds even
over positive characteristic, as we show in Theorem 4.20 (stated above). Our proof
of Theorem 4.20 uses result in type A proven by Church-Ellenberg—-Farb—Nagpal
[CEFN14, Theorem 1.2].

1.3 FI,yi-modules

In Section 3 we study FIpcfi—modules, a class of F1gc—modules with additional struc-
ture: the Flpc morphisms admit partial inverses. See Definition 3.1 for a complete
description. Flpcf—modules mirror the Flf-modules (“FI sharp modules”) intro-
duced by Church-FEllenberg-Farb [CEF12] in type A.

In Example 1.5, the Flgc—modules in number 1, 2, 3, and 5 all have Flpcf-
module structures. Number 6 and 7 cannot be promoted to Flgcf—modules.

The structure of a finitely generated Flpcf—module is highly constrained. We
prove in Theorem 3.7 that Flgcf—-modules can be decomposed as direct sums of
FIy—modules of the form

{ Pindj 5 UnX k:}
m=0

As in Example 1.5.5, k denotes the trivial B,,_,,—representation, and U,, is a B,,—
representation, possibly 0. The external tensor product (U, X k) is the k-module
(U @1 k) as a (B, X Bp_m)-representation. This classification result parallels a cor-
responding statement for Flf—-modules proven by Church-Ellenberg-Farb [CEF12,
Theorem 2.24].

Some consequences of this additional structure: an FIgcfi—module finitely gener-
ated in degree < d has characters equal to a unique character polynomial of degree
at most d for all values of n, and dimensions given by a polynomial in n of degree at
most d for all n. Additional consequences are given in Section 4.5.

= P Mw(Un).
m=0

n

1.4 Some applications

FI)y—modules and Flyyf-modules arise naturally throughout geometry and topol-
ogy, and in Section 5 we use the theory developed here to give results for two
such families: the cohomology groups of the pure string motion group PX,, and
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the cohomology groups of the hyperplane complements associated to the reflection
groups W,.

Application: the pure string motion group.  Let P¥,, be the group of pure string
motions, motions of n disjoint, unlinked, unknotted, smoothly embedded circles S 1
in R3. This motion group is a generalization of the pure braid group, and can be re-
alized as the group of pure symmetric automorphisms of the free group F,,; see Section
5.1 for a complete definition.

The pure string motion group also appears in the literature under the names the
group of loops, the pure untwisted ring group, the group of basis-conjugating automor-
phisms of the free group, the Fouxe-Rabinovitch automorphism group of the free group,
and the Whitehead automorphism group of the free group. For more background
on these groups and their cohomology, see for example Brendle-Hatcher [BH11],
Brownstein—Lee [BL93], Dahm [Dah62], Goldsmith [Gol81], Jensen-McCammond-
Meier [JMMO06], McCool [McC86], or Wilson [Wil12].

Theorem 5.3. Let k be Z or Q. The cohomology rings H*(PX,, k) form an FIpct-module,
and a graded Flpc—algebra of finite type, with H™(PX,, k) finitely generated in degree
< 2m. In particular the F1gc—algebra H*(PX,, Q) has slope < 2.

We recover (with considerably less effort) the main result of our previous paper
[Wil12]:

Corollary 5.4 . For each m, the sequence { H™ (PX,; Q)},, of representations of B,, (or Sy,)
is uniformly representation stable, stabilizing once n > 4m.

A consequence of uniform representation stability, which follows from stability
for the trivial representation and a transfer argument, is rational homological sta-
bility for the string motion group ¥,,. This recovers the rational case of a result of
Hatcher and Wahl [HW10, Corollary 1.2]. More details are given in Section 7 of
[Wil12].

Another consequence of Theorem 5.3 is the existence of character polynomials.
Because these cohomology groups are Flgcf—-modules, their characters are equal to
the character polynomial for all values of n, and not just n sufficiently large.

Corollary 5.6. Let k be Z or Q. Fix an integer m > 0. The characters of the sequence of
By,—representations { H™(PX,,; k)}, are given, for all values of n, by a unique character
polynomial of degree < 2m.
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We compute these character polynomials explicitly in degree 1 and 2:

XHl(PE.;Z) = X12 — X1 — Y12 +Y1
3 1 3
§Y13 + 51/14 + X2 -2X3 - §Xf’

1 1 1
+ §X§ + 5X1Y12 — XYy — XoY] — V1Y + 5X%Yl — X1 Xy —2Ys

Xm2(psaz) = 2Xo + Y +2Y5 — XTYP —

It is an open problem to compute these polynomials for larger values of m.

Application: hyperplane complements.  Each family of groups W, has a canon-
ical action on R" by signed permutation matrices; we denote by .4y (n) the set of
complexified hyperplanes fixed by reflections in W,,, and

Ay (n) = (c"\ U =
Hed (n)
the associated hyperplane complement. See Section 5.2 for explicit descriptions of
these spaces, and a brief survey of results on the structure of their cohomology rings.
In type A, the space .#Z4(n) is precisely the ordered n-point configuration space of
C, and Church-Ellenberg-Farb show its cohomology groups are finitely generated
FI1sf—modules [CEF12, Theorem 4.7]. Using a presentation for H*(.#yy(n); C) com-
puted by Brieskorn [Bri73] and Orlik-Solomon [OS80], we generalize the results of
[CEF12] to all three families of classical Weyl groups.

Theorem 5.8. Let .4y be the complex hyperplane complement associated with the Weyl
group W, in type A,_1, Bp/Cy, or Dy,. In each degree m, the groups H™(.# s(e),C)
form an FIst—module finitely generated in degree < 2m, and both H™ (.#pc(e),C) and
H™ (M p(e),C) are Flgct—modules finitely generated in degree < 2m.

Corollary 5.9. In each degree m, the sequence of cohomology groups { H™ (4 (n),C)}y,
is uniformly representation stable in degree < 4m.

Corollary 5.10. In each degree m, the sequence of characters of the WW,—representations
H™ (A (n),C) are given by a unique character polynomial of degree < 2m for all n.

We emphasize that, because these sequences are Flyyf—-modules, their characters are
equal to the character polynomial for every value of n.

Corollary 5.9 recovers the work of Church-Farb [CF13, Theorem 4.1 and 4.6]
in types A and B/C. In type A, Theorem 5.8 follows from the work of Church-
Ellenberg-Farb [CEF12] on the cohomology of the ordered configuration space of
the plane.
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Character polynomials and stable decompositions for H™(.# s(e),C) are com-
puted in [CEF12] for some small values of m. In Type B/C and D, we can also
compute the character polynomials by hand in small degree:

X Y; X Y;
XH (Mp(e),C) = 2< 2l> + 2( 21> +2X, XHY (Mpc(e),C) = 2< 21> + 2( 21> +2Xo+ X1 - Y

See Section 5.2 for the character polynomials and stable decompositions in degree
mis 1and 2.

1.5 Relationship to the theory of FI-modules

Our theory of FI)y—modules has very close parallels to work of Church, Ellenberg,
Farb, and Nagpal [CEF12, CEFN14] on the symmetric groups, which we aim to high-
light throughout this paper. Working with the other classical Weyl groups, however,
we do encounter some new obstacles and some new phenomena. We enumerate
some differences here:

Character polynomials in type B/C.  The existence of character polynomials for
finitely generated FI,—modules follows immediately from representation stability
and classical results in algebraic combinatorics: the formula for the character poly-
nomial of the irreducible S,-representation V'()\), appear in texts such as Mac-
Donald [Mac79]. The achievement of [CEF12] here was uncovering this (regret-
tably little-known) formula and recognizing its implications for the study of FI4—
modules. The analogous formulas for the irreducible B,-representations are less
readily available, however, and we compute these in Section 4.2. These signed char-
acter polynomials now involve two sets of variables X, and Y;, corresponding to
the positive and negative cycles for these groups.

Character polynomials in type D.  Given the classification of conjugacy classes
in type D (Section 2.1.3), and the existence of "split” classes that could not be char-
acterized by signed cycle type, we had not expected an analogue of character poly-
nomials to exist for sequences of D,,—representations, except in exceptional cases. A
finitely generated FIp—module does have characters equal, for large n, to a charac-
ter polynomial. We establish this existence result by realizing the tail of a finitely
generated FIp-module V as the restriction of an FIgc—module, using properties of
categorical induction Ind5°.

A category FIpf? There does not appear to be a suitable analogue of FIf for

the category FIp; see Remark 3.2. Fortunately, and perhaps not by coincidence,
the applications in type D where we have expected this extra structure, such as
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the cohomology groups of the hyperplane complements .#p(n), turned out to be
restrictions of Flgcf—~modules to FIp C Flge.
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2 Background

2.1 The Weyl groups of classical type and their representation theory

We briefly summarize the rational representation theory of the three families of Weyl
groups, and the associated notation used in this paper. A more detailed review, with
additional references, is given in [Wil14, Section 2].

2.1.1 The symmetric group S,

Given a partition A F n, A = (Ao, A1,. .., \r), we denote the parts of the partition by
Ai and index them in decreasing order \g > A; > --- > \,. We write |\| = n to
indicate the size of the partition, and write £(\) to denote the length of A, the number
of parts.

The rational irreducible representations of the symmetric group S, are classified
by partitions of n (see for example Fulton-Harris [FH04]) and we write V) to denote
the S,,—representation associated to the partition \.

Given a partition A - m and an integer n > A\; + m, define the padded partition

An] = ((n—m), A1, Ag, .oy Ap).

We denote by V' ()),, the irreducible S, —representation associated to A[n], that is,

S N (n=m) >\,
V(X)n = { 0 otherwise.
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2.1.2 The hyperoctahedral group B,

Recall that the hyperoctahedral group (or signed permutation group) B, is the group
of generalized permutation matrices with nonzero entries +1; equivalently, B, =
(Z)2Z)" x Sy, is the symmetry group of the set {{—1,1},{—2,2},...,{—n,n}}. We
frequently consider B,, as a subgroup of the symmetric group on the set

Q={-1,1,-2,2,...,—n,n},

and write signed permutations in the corresponding cycle notation.

The rational representation theory of B,. Recall that the irreducible rational
B,—representations are classified by double partitions of n, ordered pairs of partitions
A= (AT, A7) with [AT| + |A7| = n, as follows.

Let V(\+ &) denote the B,-representation pulled back from S, —representation
V\+, and denote

V(@,)r) = V(A*,@) ® Q7

where Q° is the one-dimensional representation given by the character ¢ : B, —
B,,/D,, = {£1}. Then for A* = mand A~ + (n — m) we define

Voo =Ind5"  p Vi o) B Vg o),

where X again denotes the external tensor product of the B,,~representation V() + )
with the B;,_,~representation V(4 \-). The rational irreducible B,-representations
are precisely the set

{Vora-) | (AT, A7) is a double partition of n} .

For a double partition A = (AT, A7) with AT + £ and A~ + m, we define the
padded double partition A\[n] := (A*[n — m], A\™) associated to A = (AT, \7). We write
V(A)n or V(AT, A7), to denote the irreducible B,—representation

—f Vap (n—=m) > AT,
V(N = { 0 otherwise.

The conjugacy classes of B,,.  The conjugacy classes of B,, are classified by signed
cycle type. Each element of B,, decomposes into a product of cycles; a factor is called
an r—cycle if it maps to an r—cycle in S,, under the natural surjection. An r—cycle is
positive if its r'" power is the identity, equivalently, if it reverses the sign of an even
number of digits {+1,...,+n}. An r—cycle is negative if its r*" power is the product
of r involutions (—i i), equivalently, if it reverses the sign of an odd number of digits.
For example, (1)(—1) is a positive 1-cycle, and (—1 1) is a negative 1-cycle.

We designate the cycle type of a signed permutation in B,, by a double partition
(vT,v7) of n, where the parts of v are the lengths of the positive cycles and the
parts of v~ are the lengths of the negative cycles.
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2.1.3 The even-signed permutation group D,

The even-signed permutation group D,, is the subgroup of signed permutation ma-
trices B,, of matrices that have an even number of entries equal to —1.
The rational representation theory of D,,.

Given an irreducible representation V(y+ »-) of B, with AT £ X7, its restriction
to D, is also irreducible. We denote this irreducible D,—representation by

Vit a-y o= Resl’%sz,k) = ReSgZV(A—v)\ﬂ, AT AN

These D,—representations are nonisomorphic for each distinct set of partitions
{AT, A" }. When n is even, for any partition \ - 5, the irreducible B,,~representation
Vian restricts to a sum of two nonisomorphic irreducible D,-representations of
equal dimension. The irreducible rational representations of D,, are therefore classi-
fied by the set

[T LA £, W =) [T{005) ) | :g}

The ’split” irreducible representations V{, ;) and V, _) only arise when n is even.

Given an (ordered) double partition A = (AT, A7) with AT + £and A\~ + m,
we write V()),, to denote the D,,—representation V' (\),, := ResgflV()\)n. Explicitly,
V(M) is the D,—representation

Vintin—m], A~} (n—m) > Al and AT[n —m] # A~
V=<4 Vo, V-, oy (n—m) > A and Af[n —m] = A,
0 otherwise.

The D,,-representation V' (\),, is irreducible for all but at most one value of n.

We remark that, in contrast to the sequence of S,, or B,, representations V' (\),,

knowing the D,,-representation V' (\),, for a single value of n may not be enough to
determine V'(\),,+1, as we cannot distinguish the partitions A" [n — m] and A\~.
The conjugacy classes of D,,.  As with B, each element of D,, decomposes into
a product of signed cycles; by definition each element must have an even number
of negative cycles. Signed cycle type is a D,, conjugacy class invariant, and it nearly
classifies the conjugacy classes, with one qualification: when n is even, the elements
for which all cycles are positive and have even length are now split between two
conjugacy classes.

2.2 Representation stability

Representation stability was introduced by Church-Farb [CF13] for a variety of fam-
ilies of groups G, including S,, and B,,. In [Will4, Section 2.2] we additionally de-
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fined representation stability for sequences of D,,—representations. We recall these
definitions here.

Definition 2.1. (Representation stability). Let JV,, be one of the families of classical
Weyl groups, and suppose {V,, } is a sequence of finite-dimensional W, —representations
over characteristic zero with maps ¢,, : V;, = V1. The sequence {V,,, ¢,, } is consis-
tent if ¢y, is equivariant with respect to the action of W,, on V;, and of W,, C W, 11
on V1.

A consistent sequence {V,,, ¢y, } is representation stable if it satisfies three proper-
ties:

L. Injectivity. The maps ¢y, : V;, = V,,41 are injective for n >> 0.
I. Surjectivity. The image ¢,(V;,) generates V1 as a k[WW,,11]-module for n >> 0.

III. Multiplicities. Decompose V;, into irreducible W, —representations:
Vo =P exnVNn
A

For each ) there exists some NN, such that the multiplicity cy ,, of V'()),, is constant
for n > N,.

The sequence is uniformly representation stable if Ny can be chosen indepen-
dently of .

A main result of [Will4] is that for rational FI,y—modules, finite generation is
equivalent to uniform representation stability.

Theorem 2.2. [Will4, Theorem 4.22] Let k be a field of characteristic zero. An FLy—
module V' is finitely generated if and only if {V,,} is uniformly representation stable with
respect to the maps induced by the natural inclusions I,, : n — (n+ 1).

Details (including bounds on the stable range) are given in Section 2.3.7.

2.3 Summary of terminology and foundations for FI,,—modules

In this section we summarize the main definitions and foundational results devel-
oped in [Wil14] on FI)y—module theory.

2.3.1 The FIyy-modules Myy(m) and My, (U)

Definition 2.3. (The FI,y—modules M)y, (m) and My, (U)). Let W,, denote S,,, B,,, or
D,,. For fixed integer m > 0, define My (m) to be the FI;y—module over k such that

Mw(m)n =k [HomFIW (Il’l7 n)]
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with an action of W,, by postcomposition.
We can identify Myy(m), with the k-span of the set

{(f(l),f(2), . ,f(m)) Cn | f:m—nanFly morphism} .
For each n we have an isomorphism of W, —represntations
My (m), = Ind)\"  k;

here k is the trivial W,,,—representation.
Given a Wp,-representation U, we define My (U) to be the FI,,-module

Mw(U)p := Myy(m), gy, U

In particular Myy(m) = My (k[W,]).
Let FByy denote the wide subcategory of Fl)y, consisting of all objects and all
endomorphisms. Denote by FByy—Mod the category of functors

FByy — k-Mod;

the objects are sequences of W,,,—representations (with no additional maps) and the
morphisms are sequences of W,,—equivariant maps.
We extend Myy to a functor on the category FByy—Mod

My : FBw—MOd — Flw—MOd
U +— tim(Un).-

Given an Flyy-module V' and any subset S = {v;} C ano Vo, with v; € Vpp,,
there is a unique map of FIy—module

P My (m;) — v
i=1
fr— fu(vi) f € Homyy(m;, n), the basis for Myy(m;),
from ,_, Myy(m;) onto the Fl)y—submodule generated by S, the smallest submod-

ule of V' that contains S. An Fljy—module V is finitely generated if and only if it is
the quotient of a finite sum of FI)y—-modules @le My (m;).

Definition 2.4. (Finite Presentation; Relation degree). Let V' be a finitely generated
FIy)y—module. Then V is finitely presented with relation degree r if there is a surjection

L

P My (m;) » v

=1
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with a kernel finitely generated in degree at most .
The Noetherian property [Will4, Theorem 4.21] implies that all finitely gener-
ated FIy—modules are finitely presented.

2.3.2 The Noetherian property

A critical property of Fly—modules that underlies all our major results is that the
category of FI)y—modules over a Noetherian ring is Noetherian. Church-Ellenberg—
Farb-Nagpal prove this result for FI ,—modules [CEFN14, Theorem 1.1], and we use
their work to prove it more generally:

Theorem 2.5. [Will4, Theorem 4.21] (FI,-modules are Noetherian). Let k be a
Noetherian ring. Any sub—Flyy—module of a finitely generated FL,y—module over k is it-
self finitely generated.

2.3.3 The functor Hy

Definition 2.6. (The functor Hy). As in [CEF12, Definition 2.18], we define the func-
tor Hy by

Hy : Fl)y~Mod — FByy-Mod

(Ho(V))p = Vn/ (spanv( H Vk)>n

k<n

Hy(V) is a minimal set of WV,,,—representations to generate the FI,—module V. We
can put an FI)y—-module structure on the W, —representations (Hy(V)),, by letting I,,
act by 0 for all n; it is the largest quotient of V' where all FI,y, morphisms f between
distinct objects act by zero. We denote this FI,y-module by Ho (V).

Hy is a left inverse to M)y, that is, given U = {Uy, },, we have Ho(My(U)),, =
Up, for all m. We will see in Section 3 that additionally My,(Hy(V)) = V when V
has the additional structure of an Flyy —module.

There are surjections

My (Ho(V)) -V and V = Ho(V)Fw,

2.3.4 Restriction and induction of FI,,-modules

The inclusions of categories FIy C FIp C Flpc enable us to define restriction and
induction operations on the corresponding categories of FIyy—-modules. Both restric-
tion and induction preserve finite generation of FIyy—modules, a fact that we use to
recover results in type B/C and D from work of Church-Ellenberg-Farb-Nagpal

19



[CEFN14] in type A. We use additional properties