Stability in the Homology of Torelli Groups

Jenny Wilson (Michigan) joint with Jeremy Miller (Purdue) and Peter Patzt (Purdue)

International Conference on Manifolds, Groups, and Homotopy 18–22 June 2018

Stability in the homology of Torelli groups

 $\Sigma_{g,1}$ = compact orientable smooth genus-*g* surface with 1 boundary component

Today's goal:

Theorem (Miller–Patzt–Wilson)

Let $\mathcal{I}_{g,1}$ denote the Torelli group of $\Sigma_{g,1}$. The sequence of $Sp_{2g}(\mathbb{Z})$ -reps $\{H_2(\mathcal{I}_{g,1};\mathbb{Z})\}_g$ is centrally stable for $g \ge 45$.

Analogous results (Miller–Patzt–Wilson): IA_n \subseteq Aut(*F_n*), congruence subgroups of GL_n(*R*)

The Mapping Class Group

Definition (Mapping Class Group $Mod(\Sigma)$)

Surface Σ .

 $Mod(\Sigma) := Diffeo^+(\Sigma, \partial \Sigma) / (isotopy fixing \partial \Sigma).$

Theorem (Dehn, Mumford, Lickorish, Humphries) $Mod(\Sigma_{a,1})$ is f.g. by (2g + 1) Dehn twists.

Action on Homology

$$\begin{aligned} \mathsf{Mod}(\Sigma_{g,1}) & \hookrightarrow & \mathsf{H}_1(\Sigma_{g,1},\mathbb{Z}) \cong \mathbb{Z}^{2g} \\ & \leadsto & \mathsf{Mod}(\Sigma_{g,1}) \twoheadrightarrow \mathsf{Sp}_{2g}(\mathbb{Z}) \end{aligned}$$

Example (Closed Torus T^2)

$$T_{\alpha}(\beta) = \alpha + \beta$$

$$\mathsf{Mod}(\mathcal{T}^2) \xrightarrow{\cong} \mathsf{Sp}_2(\mathbb{Z}) \cong \mathsf{SL}_2(\mathbb{Z})$$
$$\mathcal{T}_{\alpha} \longmapsto \begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}$$
$$\mathcal{T}_{\beta} \longmapsto \begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix}$$

The Torelli Group

Definition (Torelli group $\mathcal{I}_{g,1}$)

Torelli group $\mathcal{I}_{g,1}$ = kernel of the symplectic representation

$$1 \longrightarrow \mathcal{I}_{g,1} \longrightarrow \mathsf{Mod}(\Sigma_{g,1}) \longrightarrow \mathsf{Sp}_{2g}(\mathbb{Z}) \longrightarrow 1$$

Examples of mapping classes in $\mathcal{I}_{g,1}$:

Finiteness Properties of Torelli

Theorem (McCullough–Miller). $\mathcal{I}_{2,1}$ is not f.g.

Theorem (Johnson). $\mathcal{I}_{g,1}$ is f.g. for $g \ge 3$.

Major Open Question. Is $\mathcal{I}_{g,1}$ finitely presentable for $g \ge 3$?

Finiteness Properties of Torelli

Open Question. Which groups $H_i(\mathcal{I}_{g,1})$ are f.g.?

 $H_i(\mathcal{I}_{g,1})$ – known **not** f.g. for certain *i* [Mess, Johnson–Millson–Mess, Hain, Akita, Bestvina–Bux–Margalit]

Little is known about $H_2(\mathcal{I}_{g,1})$.

Action on $\{H_*(\mathcal{I}_{g,1})\}_g$

Key: The sequence $\{H_2(\mathcal{I}_{g,1})\}_g$ has more structure.

$$\begin{split} 1 & \longrightarrow \mathcal{I}_{g,1} & \longrightarrow \mathsf{Mod}(\Sigma_{g,1}) & \longrightarrow \mathsf{Sp}_{2g}(\mathbb{Z}) & \longrightarrow 1 \\ & \leadsto & \mathsf{Sp}_{2g}(\mathbb{Z}) \ \bigcirc \ H_*(\mathcal{I}_{g,1}). \end{split}$$

 $\begin{array}{ll} & \longrightarrow & \mathsf{Mod}(\Sigma_{g,1}) \to \mathsf{Mod}(\Sigma_{g+1,1}) & \text{respects Torelli} \\ & & \longrightarrow & H_*(\mathcal{I}_{g,1}) \to H_*(\mathcal{I}_{g+1,1}) & \mathsf{Sp}_{2g}(\mathbb{Z})\text{-equivariant} \end{array}$

$\{H_2(\mathcal{I}_{g,1})\}$ as an SI–module

Key: Realize $\{H_2(\mathcal{I}_{g,1})\}_g$ as a functor SI \rightarrow AbGp.

Category SI (Putman–Sam) objects = \mathbb{Z}^{2g} with symplectic structure morphisms = symplectic embeddings

Theorem (Boldsen–Hauge Dollerup) For g > 6, $Sp_{2g}(\mathbb{Z}) \cdot im H_2(\mathcal{I}_{g-1,1}; \mathbb{Q}) = H_2(\mathcal{I}_{g,1}; \mathbb{Q})$

Theorem (Miller-Patzt-Wilson)

 $H_2(\mathcal{I}_{g,1};\mathbb{Z})$ is centrally stable as an SI–module in degree ≤ 45 .

Consequences: stability for $\{H_2(\mathcal{I}_{g,1})\}$

Corollary (Miller-Patzt-Wilson)

The sequence $\{H_2(\mathcal{I}_{g,1})\}_g$ is **presentable** as an SI–module in degree ≤ 45 .

Corollary (Miller-Patzt-Wilson)

The sequence $\{H_2(\mathcal{I}_{g,1})\}_g$ and all maps are determined by

$$0 \longrightarrow H_2(\mathcal{I}_{1,1}) \longrightarrow H_2(\mathcal{I}_{2,1}) \longrightarrow \cdots \longrightarrow H_2(\mathcal{I}_{45,1})$$

Corollary (Miller-Patzt-Wilson)

For g > 45, there is a partial resolution

$$Ind_{Sp_{2g-4}(\mathbb{Z})}^{Sp_{2g}(\mathbb{Z})}H_{2}(\mathcal{I}_{g-2,1}) \longrightarrow Ind_{Sp_{2g-2}(\mathbb{Z})}^{Sp_{2g}(\mathbb{Z})}H_{2}(\mathcal{I}_{g-1,1}) \longrightarrow H_{2}(\mathcal{I}_{g,1}) \longrightarrow 0$$

• For an SI–module $\{V_g\}$, construct a chain complex

$$\cdots \longrightarrow \mathsf{Ind}_{\mathsf{Sp}_{2g-4}(\mathbb{Z})}^{\mathsf{Sp}_{2g}(\mathbb{Z})} V_{g-2} \longrightarrow \mathsf{Ind}_{\mathsf{Sp}_{2g-2}(\mathbb{Z})}^{\mathsf{Sp}_{2g}(\mathbb{Z})} V_{g-1} \longrightarrow V_g \longrightarrow 0$$

Main Lemma. If $\{V_g\}$ is a *polynomial functor*, the homology satisfies a certain regularity result.

• **Theorem** (Hatcher–Vogtmann). The space of tethered chains in $\Sigma_{g,1}$ is $\left(\frac{g-3}{2}\right)$ –connected.

Proof Ingredients

spectral sequence analysis (Quillen homological stability argument)

	-1	0	1	2	3
0	$\widetilde{H}^{\mathrm{Sp}(\mathbb{Z})}_{-1}(H_0(\mathcal{I}))_{2g}$	$\widetilde{H}_0^{Sp(\mathbb{Z})}(H_0(\mathcal{I}))_{2g}$	$\widetilde{H}_1^{\operatorname{Sp}(\mathbb{Z})}(H_0(\mathcal{I}))_{2g}$	$\widetilde{H}_2^{\operatorname{Sp}(\mathbb{Z})}(H_0(\mathcal{I}))_{2g}$	
1	$\widetilde{H}^{\text{Sp}(\mathbb{Z})}_{-1}(H_1(\mathcal{I}))_{2g}$	$\widetilde{H}_0^{\text{Sp}(\mathbb{Z})}(H_1(\mathcal{I}))_{2g}$	$\widetilde{H}_1^{\text{Sp}(\mathbb{Z})}(H_1(\mathcal{I}))_{2g}$	$\widetilde{H}_2^{\text{Sp}(\mathbb{Z})}(H_1(\mathcal{I}))_{2g}$	
2	$\widetilde{H}^{\text{Sp}(\mathbb{Z})}_{-1}(H_2(\mathcal{I}))_{2g}$	$\widetilde{H}_0^{\text{Sp}(\mathbb{Z})}(H_2(\mathcal{I}))_{2g}$	$\widetilde{H}_1^{\text{Sp}(\mathbb{Z})}(H_2(\mathcal{I}))_{2g}$	$\widetilde{H}_2^{\text{Sp}(\mathbb{Z})}(H_2(\mathcal{I}))_{2g}$	
3	$\widetilde{H}_{-1}^{\operatorname{Sp}(\mathbb{Z})}(H_3(\mathcal{I}))_{2g}$	$\widetilde{H}_0^{\operatorname{Sp}(\mathbb{Z})}(H_3(\mathcal{I}))_{2g}$	$\widetilde{H}_1^{\operatorname{Sp}(\mathbb{Z})}(H_3(\mathcal{I}))_{2g}$	$\widetilde{H}_2^{\operatorname{Sp}(\mathbb{Z})}(H_3(\mathcal{I}))_{2g}$	

Proof Ingredients

• spectral sequence analysis (Quillen homological stability argument)

Thank you!