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Stability in the homology of Torelli groups

Σg,1 = compact orientable smooth
genus-g surface with 1 boundary
component

g

}
Today’s goal:

Theorem (Miller–Patzt–Wilson)
Let Ig,1 denote the Torelli group of Σg,1. The sequence of Sp2gpZq–reps
tH2pIg,1;Zqug is centrally stable for g ě 45.

Analogous results (Miller–Patzt–Wilson):
IAn Ď AutpFnq, congruence subgroups of GLnpRq
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The Mapping Class Group

Definition (Mapping Class Group ModpΣq)
Surface Σ.

ModpΣq :“ Diffeo`pΣ, BΣq / (isotopy fixing BΣ).

Example (Dehn Twist about γ)
γ – simple closed curve in Σ

Theorem (Dehn, Mumford, Lickorish, Humphries)
ModpΣg,1q is f.g. by p2g ` 1q Dehn twists.
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Action on Homology

ModpΣg,1q ü H1pΣg,1,Zq – Z2g

ù ModpΣg,1q� Sp2gpZq

Example (Closed Torus T 2)

α
β

β

Tα Tαpβq “ α` β

ModpT 2q
–
ÝÑ Sp2pZq – SL2pZq

Tα ÞÝÑ
„

1 1
0 1



Tβ ÞÝÑ
„

1 0
´1 1
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The Torelli Group

Definition (Torelli group Ig,1)
Torelli group Ig,1 = kernel of the symplectic representation

1 ÝÑ Ig,1 ÝÑ ModpΣg,1q ÝÑ Sp2gpZq ÝÑ 1

Examples of mapping classes in Ig,1:

 homologous curves separating curve

γ
Tγ P Ig,1

α

β

TαT ´1
β P Ig,1

Miller–Patzt–Wilson Stability in the Homology of Torelli Groups Manifolds,Groups,&Homotopy 5 / 14



Finitness Properties of Torelli

Finiteness Properties of Torelli

Theorem (McCullough–Miller). I2,1 is not f.g.

Theorem (Johnson). Ig,1 is f.g. for g ě 3.

Major Open Question. Is Ig,1 finitely presentable for g ě 3?
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Homology of the Torelli Group

Finiteness Properties of Torelli
Open Question. Which groups HipIg,1q are f.g.?

HipIg,1q – known not f.g. for certain i
[Mess, Johnson–Millson–Mess, Hain, Akita, Bestvina–Bux–Margalit]

Little is known about H2pIg,1q.
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Action on tH˚pIg,1qug

Key: The sequence tH2pIg,1qug has more structure.

1 ÝÑ Ig,1 ÝÑ ModpΣg,1q ÝÑ Sp2gpZq ÝÑ 1

ù Sp2gpZq ü H˚pIg,1q.

Σg,1 ãÑ Σg`1,1 { extend by id

ù ModpΣg,1q Ñ ModpΣg`1,1q respects Torelli

ù H˚pIg,1q Ñ H˚pIg`1,1q Sp2gpZq–equivariant
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tH2pIg,1qu as an SI–module

Key: Realize tH2pIg,1qug as a functor SI Ñ AbGp.

Category SI (Putman–Sam)

objects = Z2g with symplectic structure

morphisms = symplectic embeddings

0 Z2 Z4 Z6 ¨ ¨ ¨

0 H2pI1,1q H2pI2,1q H2pI3,1q ¨ ¨ ¨

Sp2pZq Sp4pZq Sp6pZq

Sp2pZq Sp4pZq Sp6pZq
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Results: stability for tH2pIg,1qu

Theorem (Boldsen–Hauge Dollerup)
For g ą 6,

Sp2gpZq ¨ im H2pIg´1,1;Qq “ H2pIg,1;Qq

Theorem (Miller–Patzt–Wilson)
H2pIg,1;Zq is centrally stable as an SI–module in degree ď 45.
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Consequences: stability for tH2pIg,1qu

Corollary (Miller–Patzt–Wilson)
The sequence tH2pIg,1qug is presentable as an SI–module in degree
ď 45.

Corollary (Miller–Patzt–Wilson)
The sequence tH2pIg,1qug and all maps are determined by

0 ÝÑ H2pI1,1q ÝÑ H2pI2,1q ÝÑ ¨ ¨ ¨ ÝÑ H2pI45,1q

Corollary (Miller–Patzt–Wilson)
For g ą 45, there is a partial resolution

Ind
Sp2gpZq
Sp2g´4pZq

H2pIg´2,1q ÝÑ Ind
Sp2gpZq
Sp2g´2pZq

H2pIg´1,1q ÝÑ H2pIg,1q ÝÑ 0
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Proof Ingredients

• For an SI–module tVgu, construct a chain complex

¨ ¨ ¨ ÝÑ Ind
Sp2gpZq
Sp2g´4pZq

Vg´2 ÝÑ Ind
Sp2gpZq
Sp2g´2pZq

Vg´1 ÝÑ Vg ÝÑ 0

Main Lemma. If tVgu is a polynomial functor, the homology
satisfies a certain regularity result.

• Theorem (Hatcher–Vogtmann). The space of tethered chains in
Σg,1 is

´

g´3
2

¯

–connected.
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Proof Ingredients

• spectral sequence analysis (Quillen homological stability argument)

3 rHSppZq
´1 pH3pIqq2g

rHSppZq
0 pH3pIqq2g

rHSppZq
1 pH3pIqq2g

rHSppZq
2 pH3pIqq2g

2 rHSppZq
´1 pH2pIqq2g

rHSppZq
0 pH2pIqq2g

rHSppZq
1 pH2pIqq2g

rHSppZq
2 pH2pIqq2g

1 rHSppZq
´1 pH1pIqq2g

rHSppZq
0 pH1pIqq2g

rHSppZq
1 pH1pIqq2g

rHSppZq
2 pH1pIqq2g

0 rHSppZq
´1 pH0pIqq2g

rHSppZq
0 pH0pIqq2g

rHSppZq
1 pH0pIqq2g

rHSppZq
2 pH0pIqq2g

´1 0 1 2 3
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Proof Ingredients

• spectral sequence analysis (Quillen homological stability argument)

3 ‹ ‹ ‹ ‹ ‹

2 rHSppZq
´1 pH2pIqq2g

rHSppZq
0 pH2pIqq2g

rHSppZq
1 pH2pIqq2g

rHSppZq
2 pH2pIqq2g

1 0 0 0 0 ‹

0 0 0 0 0 0

´1 0 1 2 3

d2

d3

d2

d3

Miller–Patzt–Wilson Stability in the Homology of Torelli Groups Manifolds,Groups,&Homotopy 13 / 14



Thank you!
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