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Representation stability for configuration spaces of open manifolds
Jenny Wilson

These notes and exercises accompany a 2-part lecture series on representation stability results in
configuration spaces of points in a manifold. Exercises are marked with an asterisk can be viewed
as optional; these are either more advanced or are not necessary for the main goals of the worksheets.

Lecture 1: Configuration spaces and FI]–modules

1 A review of configuration spaces

Last week, Andy Putman introduced configuration spaces.

1.1 Re-introducing configuration spaces

Definition I. (The (ordered) configuration space of a space M .) Let M be a topological space. Then
the (ordered) configuration space of M on n points is the space of n-tuples of distinct points in M ,

Fn(M) = {(m1,m2, . . . ,mn) ∈Mn | mi 6= mj for all i 6= j}

topologized as a subspace of Mn.

We can visualize points in Fn(M) as in Figure 1.
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Figure 1: A point in F3(M) for an open surface M .

Exercise 1. (Connected components of configuration spaces).

(a) Let I = (0, 1) denote the open unit interval. Illustrate the configuration spaces
F1(I), F2(I), and F3(I).

(b) Show that, for each n ≥ 0, the space Fn(I) has n! connected components, and that
each connected component is contractible.

(c) Let J = (0, 1) ∪ (2, 3) be the disjoint union of two open intervals. How many con-
nected components does Fn(J) have? Show that each is contractible.

(d) Let M be a connected manifold of dimension at least 2. Explain why, for each n ≥ 0,
the configuration space Fn(M) is connected.

Exercise 2. (Configuration spaces of manifolds).

(a) Suppose that M is a manifold. Show that Fn(M) is a manifold for all n ≥ 1.
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(b) If M is a d-dimensional manifold, then what is the dimension of Fn(M)?

Exercise 3. (Configuration spaces for small n). Prove the following.

(a) F1(M) = M for any topological space M .
(b) There is a deformation retract of F2(Rd) onto Sd−1. In particular F2(C) ' S1.

Hint: Consider the maps

F2(Rd) −→ Sd−1 Sd−1 −→ F2(Rd)

(x, y) 7−→ (x− y)

|x− y|
z 7−→ (z,−z).

(c) There are homeomorphisms

Fn(Rd) ∼= Rd × Fn−1(Rd\{0})

Fn(C×) ∼= (C×)× Fn−1(C×\{1}).
Hint: Use the group structures on Rd and C×.
Get stuck? See F. Cohen [Co, Example 2.6].

(d) Conclude from part (c) that for n ≥ 2,

Fn(C) ∼= C× C\{0} × Fn−2(C\{0, 1})

Exercise 4. (Configuration spaces do not respect homotopy type). Show by example
that even if M and M ′ are homotopy equivalent, then Fn(M) and Fn(M ′) need not be
homotopy equivalent.

1.2 Unordered configuration spaces

The symmetric group Sn acts on Fn(M) by permuting the n components of a point (m1,m2, . . . ,mn),
equivalently, by permuting the labels on the n points as shown in Figure 1.

Exercise 5. (The Sn-action and its quotient).

(a) Show that Sn acts freely on Fn(M). Conclude that the quotient map Fn(M) →
Fn(M)/Sn is a covering space map.

(b) Show that the quotient Fn(M)/Sn can be identified with the set of n-element subsets
of M , and points can be visualized as in Figure 2.

Figure 2: A point in C4(M) for an open surface M .

Definition II. (The unordered configuration space of a space M .) Let M be a topological space.
Then the unordered configuration space Cn(M) of M on n points is the quotient of Fn(M) by the action
of Sn. It is topologized as a quotient space.

Our goal for this lecture series is to study the homology of the configuration spaces of a non-compact
manifold. To do this, we will introduce the following tool: FI]–modules. Some of the following
section will be a review of material from Andrew Snowden’s lectures.
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2 Induced FI–modules and FI]–modules

2.1 Representable and induced FI–modules

For n ∈ Z≥1, let [n] := {1, , 2, . . . , n}. Let [0] := ∅.

Exercise 6.

(a) Show that the endomorphisms EndFI([n]) ∼= Sn act on the set of morphisms HomFI([m], [n])
on the left by postcomposition, that is,

σ : HomFI([m], [n]) 7−→ HomFI([m], [n])

α 7−→ σ ◦ α for all σ : [n]→ [n]

(b) Show that this action is transitive.

(c) Show that the stabilizer of the canonical inclusion ιm,n : [m] ↪→ [n] is

{ σ ∈ Sn | σ ◦ ιm,n = ιm,n }

is isomorphic to Sn−m.

(d) Conclude that, as an Sn–set,

HomFI([m], [n]) ∼= Sn/Sn−m.

Exercise 7.

(a) Show that the endomorphisms EndFI([m]) ∼= Sm act on the set of morphisms HomFI([m], [n])
on the right by precomposition, that is,

σ : HomFI([m], [n]) 7−→ HomFI([m], [n])

α 7−→ α ◦ σ for all σ : [m]→ [m]

(b) Determine whether this action is transitive.

Let R be a commutative, unital ring. We will consider FI–modules over R, that is, functors from FI to
the category of R–modules.

We know that any R–module is the quotient of a free R–module. We will see that the following
special class of FI–modules M(d) play the role of “free” FI–modules.

Definition III. (Representable FI–modules). Fix a nonnegative integer d. Define the FI–module
M(d) over R by

M(d)n := R ·HomFI(d, n) (the free R–module on the set HomFI(d, n))

and the action of FI–morphisms by postcomposition. An FI–module of this form is called a repre-
sentable FI–module.

Exercise 6 implies that the Sn–representationM(d)n is isomorphic to the coset representationR[Sn/Sn−d].

Exercise 8.
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(a) Show that M(d) is generated by the identity morphism idd ∈M(d)d.

(b) Conclude that if F : M(d) → V is any map of FI–modules, then F is determined by
F (idd).

Exercise 9. Show that, as Sn–representations,

M(d)n ∼= IndSn

Sn−d
R.

Exercise 10. Explicitly describe and compute the decompositions for the rational Sn–
representations M(0)n, M(1)n, and M(2)n.

Recall that the construction of the free R–module on a set S can be viewed as the left adjoint of
the forgetful functor from the category of R–modules to the category of sets. Analogously, there are
several forgetful functors from the category of FI–modules, whose left adjoint functors can be viewed
as “free” constructions, and which play an important role in the theory.

Definition IV. (The category FB and FB–modules.) Let FB denote the category of finite sets and
bijective maps. An FB–module over a commutative ring R is a functor from FB to the category of
R–modules. A map of FB–modules is a natural transformation.

Exercise 11. (a) Explain the sense in which an FB–moduleX is a sequence of Sn–representations
Xn, with no additional maps.

(b) Show that a map of FB–modules F : V → W is a sequence of Sn–equivariant maps
Fn : Vn →Wn. What conditions must these maps satisfy?

Exercise 12. (The category of FB–modules.) Fix a commutative ring R. Show that there
is a category whose objects are the FB–modules over R and whose morphisms are the
FB–module maps.

Definition V. (Induced FI–modules.) Fix a commutative ring R. For fixed d ∈ Z≥0, let Wd be a
R[Sd]–module. Recall from Exercise 7 that for each n the group Sd also acts on M(d)n on the right.
Define an FI–module M(Wd) by

M(Wd)n = M(d)n ⊗R[Sd] Wd

with an action of the FI morphisms on M(d)n on the left. More generally, if W is an FB–module (that
is, a sequence of Sn–representations), define the FI–module M(W ) by

M(W ) =
⊕
d≥0

M(Wd).

We call FI–modules of this form induced FI–module, and M(W ) the induced FI–module generated by W .

Notation VI. (External tensor product of representations.) LetG×H be a product of groups. Recall
that, if U is an G–representation over R and W an H–representation over R, we define the (G×H)–
representation U �W as follows. As an R–module, U �W ∼= U ⊗R W , and the group (G ×H) acts
by

(g, h) : U �W −→ U �W

u⊗ w 7−→ (g · u)⊗ (h · w).
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Exercise 13. Fix d and let Wd be an R[Sd]–module. Show that, as an Sn–representation,

M(Wd)n ∼= IndSn

Sd×Sn−d
Wd �R with R the trivial Sn−d–representation.

Exercise 14. Fix d, and letR[Sd] denote the left regular Sd–representation. Show that there
is an isomorphism of FI–modules

M(d) ∼= M(R[Sd]).

Exercise 15. For a FB–module W and a finite set B, show that

M(W )B =
⊕
A⊆B

WA.

Exercise 16. Show that the FI morphisms act on M(W ) by injective maps.

There is a forgetful functor
F : FI–Mod −→ FB–Mod

defined by restriction to the subcategory FB ⊆ FI. This forgetful functor takes an FI–module V
and remembers only the sequence of R[Sn]–modules {Vn} and no additional maps. The following
exercises show that we may view the assignment W 7→M(W ) as a functor

M(−) : FB–Mod −→ FI–Mod,

and that this functor is a left adjoint to the forgetful functor F .

Exercise 17. (M(−) as a left adjoint.)

(a) Show that the map

M(−) : FB–Mod −→ FI–Mod
W 7−→M(W )

is a covariant functor.
(b) Show that M(−) left adjoint to the forgetful functor F . Concretely, show that for

each object V ∈ FI–Mod and W ∈ FB–Mod, there is a natural bijection of sets

HomFB–Mod(W,F(V )) = HomFI–Mod(M(W ), V ).

(c) Show that the functor M(−) is exact. Hint: Exercise 15.

Given this adjunction, we may think of M(W ) as the FI–module “freely generated” by the sequence
of representations {Wn}.

Exercise* 18. (FN–modules.) Let FN be the category whose objects are the sets [n], n ∈
Z≥0, and whose only morphisms are the identity morphisms idn. An FN–set is a functor
from FN to the category of sets, that is, it is a sequence of sets An. Then there is a forgetful
functor

FI–Mod −→ FN–Set

defined by taking an FI–module V to the underlying sequence of sets. Show that this
forgetful functor is the right adjoint to the functor

FN–Set −→ FI–Mod

{An} 7−→
⊕
d≥0

M(d)⊕Ad
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Remark VII. Some authors refer to FI–modules of the form
⊕

dM(Wd) as free FI–modules, and some
reserve the term free for the more restricted class of FI–modules of the form

⊕
dM(d)⊕cd . In these

notes we will not enter into this debate, but refer to these FI–modules as induced or sums of representa-
bles, respectively.

2.2 Perspectives on FI]-modules

Definition VIII. (Based sets and maps of based sets.) A based set A0 is a set with a distinguished
element 0 ∈ A0, called the basepoint. A map of based sets f : A0 → B0 is a map of sets that takes the
basepoint in A0 to the basepoint in B0.

Definition IX. (The category FI]) Let FI] (read “FI–sharp”) be the category defined as follows. The
objects are finite based sets. The morphisms are maps of based sets that are injective away from the
basepoints, in the following sense: If f : A0 → B0 is map of based sets, then f is an FI] morphism if
f−1(b) has cardinality |f−1(b)| ≤ 1 for all b ∈ B0 not equal to the basepoint.

Notation X. For n ∈ Z≥0, let [n]0 denote the based set

[n]0 := {0, 1, 2, . . . , n} with basepoint 0.

For a finite set A, we write A0 := A t {0} to be the disjoint union of A with basepoint 0.

Exercise 19.

(a) Show that FI] is isomorphic to its opposite category FI]op.

(b) Show that Sn ( EndFI]([n]0), but that Sn is exactly the group of invertible endomor-
phisms of the object [n]0.

(c) Describe an embedding FI ⊆ FI].

(d) Show that the image of every FI morphism in FI] has a one-sided inverse.

Exercise* 20. (An alternate description of FI].) Show that FI] is isomorphic to the fol-
lowing category, which was the original description given by Church–Ellenberg–Farb
[CEF1, Definition 4.1.1]. The objects are finite sets. The morphisms Hom(S, T ) are triples
(A,B, α) with A ⊆ S, B ⊆ T , and α : A → B a bijection. The composition of morphisms
(A,B, α) : S → T and (D,E, δ) : T → U is the morphism

(α−1(B ∩D), δ(B ∩D), δ ◦ α) : S → U.

Exercise* 21. (FI] as the category of spans on FI.) Given a category C, a span in C is a
diagram of the form X1 ← Z → X2. Two spans X1 ← Y → X2 and X1 ← Z → X2 are
isomorphic if there is an isomorphism Y ∼= Z in C making the following diagram commute

Y

~~   
∼=

��

X1 X2

Z

`` >>
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If the category C has pullbacks, then we can compose spans X1 ← Z1 → X2 and X2 ←
Z2 → X3 by taking the pullback:

Z1 ×X2 Z2

zz $$
Z1

~~ %%

Z2

yy   
X1 X2 X3

We can then construct a new category, the category of spans on C, whose objects are the
objects of C, and whose morphisms from X1 to X2 are isomorphism classes of spans of
the form X1 ← Z → X2 for some object Z ∈ C.

(a) Verify that the category of spans on C is in fact a well-defined category. Identify the
identity morphisms, and check that composition of morphisms is associative.

(b) Identify C as a subcategory.
(c) Show that FI] is equivalent to the category of spans on FI.

Definition XI. (FI]–modules.) An FI]–module V over a commutative ring R is a functor from FI] to
the category of R–modules.

We may write Vn for the value of V on the based set [n]0, or more generally VA for the value of V on
the based set A0.

An FIop–module over a ring R is a functor from the opposite category FIop of FI to the category of R–
modules. Equivalently, it is a contravariant functor from FI to R–modules. In the following exercise
we will see that an FI]–module simultaneously carries an FI– and an FIop–module structure in a
compatible way.

Exercise 22. Show that any FI]–module is both an FI–module and and FIop–module. De-
scribe what relations must be satisfied by the actions of the FI morphisms and FIop mor-
phisms.

Exercise 23. Let Wd be an R[Sd]–module. Show that the FI–module structure on M(Wd)
can be promoted to an FI]–module structure.

2.3 The functor HFI
0

Definition XII. (The functor HFI
0 .) Define a functor

HFI
0 (−) : FI–Mod −→ FB–Mod

HFI
0 (V )n =

Vn
R[Sn] · 〈α(Vm) | α : [m]→ [n] an FI morphism, m < n〉

In other words, in degree n, the Sn–representation HFI
0 (V )n is a quotient of Vn, which captures the

component of Vn which is not generated in lower FI degree.
When convenient, we will take the codomain of HFI

0 to be FI–Mod, and define all non-isomorphism
morphisms to act by zero.
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Exercise 24. Verify that HFI
0 is in fact a functor.

One the key properties of HFI
0 is described by the following exercise.

Exercise 25. Let V be an FI–module. Show that V is generated in degree ≤ d if and only
if

HFI
0 (V )n = 0 for all n > d.

2.4 A classification of FI]–modules

The following exercise gives a complete characterization of FI]–modules. It is a result of Church–
Ellenberg–Farb [CEF1, Theorem 4.1.5], and it mirrors an earlier result of Pirashvili [Pir, Theorem
3.1].

Exercise 26. (The structure of the category of FI]–modules.) The goal of this problem is
to show that every FI]–module has the form M(W ) for some FB–module W . Specifically,
we will show that an FI]–module V satisfies a canonical isomorphism V ∼= M(HFI

0 (V )).
Hint: Get stuck? Check out Church–Ellenberg–Farb [CEF1, Theorem 4.1.5].

(a) The proof proceeds by induction on n. We will show that given an FI]–module sat-
isfying

Vm = 0 for all m < n (∗)
then we can write V ∼= M(Vn)⊕ V ′ for some FI]–module V ′ satisfying V ′m = 0 for all
m ≤ n. Explain why we then inductively obtain the desired decomposition of our
FI]–module.

(b) For the remainder of the proof, we fix n. Verify that, under Condition (∗), Vn =
H0(V )n, so M(Vn) = M(HFI

0 (V )n).
(c) Let f : A0 → B0 be an FI] morphism, and suppose that the image of f is m elements

plus the basepoint. Show that f factors through the object [m]0.
(d) Given an FI]–module V satisfying Condition (∗), define a map

E : V −→ V

EA : VA −→ VA

EA =
∑
C⊆A
|C|=n

(IC)∗

where the morphism IC : A0 → A0 is the identity on the subset C ⊆ A, and maps
the complement of C to the basepoint. Verify that E is a map of FI]–modules.

(e) Verify that if Vn = 0, then E : V → V is the zero map.
(f) Given FI]–modules U and V satisfying Condition (∗), and a map of FI]–modules

F : U → V , verify that E commutes with F .
(g) Verify that E is idempotent (that is, E2 = E) in its action on any FI]–module V

satisfying Condition (∗). Specifically, show

EA ◦ EA =
∑

C,B⊆A
|C|=|B|=n

(IC∩B)∗ =
∑
C⊆A
|C|=n

(IC)∗ = ES .
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(h) Conclude from part (g) that V decomposes as a direct sum of FI]–modules V ∼=
EV ⊕ ker(E), and conclude from part (f) that this decomposition is respected by
maps of FI]–modules satisfying Condition (∗).

(i) Verify that EVn = Vn, and ker(E)n = 0. Our goal is to show that the decomposition
V ∼= EV ⊕ ker(E) is the desired decomposition V ∼= M(Vn)⊕ V ′.

(j) Let V be an FI]–module satisfying Condition (∗). Construct a map of FI]–modules
F : M(Vn)→ V .
Hint: Recall from Exercise 15 that M(Vn)B =

⊕
A⊆B
|A|=n

VA. Define FB on the summand

VA to be the map VA → VB induced by the inclusion A0 ↪→ B0. Verify that this
defines a map of FI]–modules.

(k) Verify that E is the identity map on M(Vn).

(l) Using part (h) and part (k), show that the imageM(Vn) is contained in the summand
EV .

(m) We therefore have an exact sequence

0 −→ ker −→M(Vn)
F−→ EV −→ coker −→ 0.

Using part (e) and part (k), show that coker = ker = 0. Conclude that F defines an
isomorphism of FI]–modules from M(Vn) to EV .

(n) Conclude that the decomposition V ∼= EV ⊕ ker(E) is precisely a decomposition of
the desired form M(Vn)⊕ V ′ described in part (a).

The following theorem, which appears in Church–Ellenberg–Farb [CEF1, Theorem 4.1.5] is outlined
in the exercises.

Theorem XIII. (Classification of FI]–modules) Every FI]–module has the form M(W ) for some FB–
module W . In particular, the category of FI]–modules is equivalent to the category of FB–modules.

Exercise 27. (a) Show that, for an FB–module W ,

HFI
0 (M(W )) = W.

(b) Let V be an FI–module. Show that M
(
HFI

0 (V )
)

need not equal V . What if V is an
FI]-module?

(c) Show that the functor
M(−) : FB–Mod −→ FI]–Mod

is an equivalence of categories, with inverse

HFI
0 (−) : FI]–Mod −→ FB–Mod

Exercise 28. Let R be a field of characteristic zero. Conclude from Exercise 27 that the
category of FI]–modules over R is semisimple.

Exercise 29. (Polynomial and exterior algebras as FI]–modules.)
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(a) Let V be the FI–module with Vn = Z[x1, . . . , xn] and inclusions Vn ↪→ Vn+1. Show
that V is an FI]–module.

(b) Consider the FI]–submodules of V consisting of homogeneous degree k polynomials
for k = 0, 1, 2, 3. Explicity write each of these FI]–modules in the form

⊕
d≥0M(Wd)

for appropriate Sd–representations Wd.

(c) Repeat these exercises for the case that V is the sequence of exterior algebras Vn =∧
Z〈x1, . . . , xn〉.

Next time: We will see that the homology of configuration spaces of points in certain manifolds has
an FI]–module structure. We will exploit this structure to prove that these sequences of homology
groups are finitely presented as FI–modules.
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Lecture 2: Stability in the homology of configuration spaces

3 Homology of the configuration space of an open manifold as an
FI]–module

3.1 Homology classes in a configuration space

Throughout this lecture, we will fix M to a connected, non-compact manifold of dimension at least 2.
The goal of this lecture is to study the homology groups of the configuration spaces Fn(M). Specifi-
cally, we will prove the following theorem. This result is originally due (for orientable M ) to Church
[Chu, Theorem 1] and Church–Ellenberg–Farb [CEF1, Theorem 6.4.3]. The proof presented here is
from Miller–Wilson [MW, Theorem 3.12].

Theorem XIV. (Hq(F•(M)) is an FI]–module generated in degree ≤ 2q). Let M be connected, non-
compact smooth manifold of dimension at least 2. Then the FI]–module Hq(F•(M)) is generated in degree
≤ 2q.

These homology groups can be visualized in a very concrete sense. Consider Figure 3.

4
2

3

5 1

Figure 3: A representative (up to sign) of an element of H2(F5(M)).

Figure 3 shows two loops in the configuration space of a surface M . Because these two loops do
not intersect, they together represent a two-parameter family of points in F5(M), parameterized by
S1 × S1. In other words, this figure describes an embedding of a torus into F5(M). This figure there-
fore represents (at least up to sign) an element in H2(F5(M)).

We can view the loop on the right-hand side of Figure 3 as, in a sense, coming from the homology
of the underlying manifold M , whereas the loop on the left-hand side as coming from the homology
of configurations in R2. Thus, starting from a knowledge of H∗(M) and H∗(Fn(Rd)), it is possible to
generate lots of examples of classes in H∗(Fn(M))).

Understanding the additive relations between these homology classes, however, is nontrivial. In
general, the homology groups of the configuration spaces Fn(M) are difficult to compute, and there
are few examples of manifoldsM where, for example, the Betti numbers are known for all n. Progress
has been made recently for the unordered configuration spaces of some manifolds; see for instance
Knudsen [Knu], Schiessl [Sch], Maguire–Francour [MF], and Drummon-Cole–Knudsen [DCK].

3.2 The homology groups {H∗(Fn(M))}n as an FI]–module

Even though the homology groups H∗(Fn(M)) can be individually difficult to compute, we can gain
traction with this problem by bundling these groups {H∗(Fn(M))}n together for all n to form an
FI–module (in fact, FI]–module). This FI–module (or FI]–module) is sometimes denoted H∗(F•(M)).
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We first describe an FIop action on the spaces Fn(M). Since homology is functorial, this structure then
defines a co–FI–module structure on the homology groups of Fn(M). The FIop action is illustrated in
Figure 4.

1
2
3

a
b
cc
d

a

c
d

b

3

2
1

Figure 4: The (contravariant) action of an FI morphism on tnFn(M).

Given an FI morphism f and a configuration in Fn(M), points in the image of the f are relabelled by
their preimage, and points not in the image of f are forgotten.

Exercise 30. Verify that this FIop action on tnFn(M) is functorial.

To define a covariant action of FI, we will use the assumption that M is non-compact. It turns out
that this implies the existence of an embedding e : M tRdim(M) ↪→M such that e|M is isotopic to the
identity. See Figure 5.

Figure 5: An embedding e : M t Rdim(M) ↪→M .

To define the FI action, we fix such an embedding e. (The action does depend on the choice of e,
but any choice will do.) Unlike the FIop action, the FI action is only defined up to homotopy. Since
homotopic maps define the same map on homology, however, we obtain a well-defined FI–module
structure on H∗(Fn(M)).

The FI action is illustrated in Figure 6.

1

3
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Figure 6: The (covariant) action up to homotopy of an FI morphism on tnFn(M).

Given an FI morphism f and a configuration in Fn(M), the configuration is mapped to its image
under the embedding e|M , and points are relabelled by their image under f . For each element in the
codomain of f that is not in its image, a labelled point is introduced in e(Rdim(M)).

Exercise 31. Verify that this FI action on tnFn(M) is functorial (up to homotopy).

The FI–module and co–FI–module structures on H∗(Fn(M)) are compatible, and extend to an action
of FI] on the homology groups, as established in the following exercises.

Exercise 32. Verify that the FI– and co–FI–module structures on H∗(F•(M)) extend to an
FI]–module structure. Describe the action of a general FI] morphism.
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4 Representation stability for the homology of (ordered) configu-
ration spaces

4.1 Historical results: stability in the homology of (unordered) configuration
spaces

Our objective is to prove representation stability for the homology groups {H∗(Fn(M))}n. These re-
sults were inspired by classical stability results for the unordered configuration spaces, due to McDuff
[McD] and Segal [Se].

Just as we defined a map Fn(M) → Fn+1(M) by introducing a (n + 1)st point “at infinity”, it is
possible to define a continuous map Cn(M) → Cn+1(M) by introducing an unlabelled point “at
infinity”, as in Figure 7.

Figure 7: The stabilization map t : Cn(M)→ Cn+1(M).

McDuff proved the folloiwng result stability result, and Segal determined the stable range.

Theorem XV. (Classical homological stability for unordered configuration spaces). Let M be a
connected, non-compact manifold of dimension at least 2. Then the stabilization map t : Cn(M)→ Cn+1(M)
induces isomorphisms on homology

t∗ : Hq(Cn(M))
∼=−→ Hq(Cn+1(M)) for all n ≥ 2q.

Exercise 33. Fix M .
(a) Recall that there is a covering map Fn(M) → Cn(M). Explain why there is an iso-

morphism between Hq(Cn(M);Q) and the Sn–coinvariants Hq(Fn(M);Q)Sn .
Hint: See the transfer map in (for example) Hatcher [H2, Section 3.G].

(b) Show that the rational homological result implied by Theorem XV implies that the
dimension of the isotypic component of the trivial representation in Hq(Fn(M);Q)
stabilizes for n ≥ 2q. Thus (at least when working rationally), we can view Theorem
XIV as a generalization of Theorem XV.

4.2 The spectral sequence

We now turn our attention to proving the main result: Theorem XIV, representation stability for the
homology of (ordered) configuration spaces. To do this, we will use (for each n) a spectral sequence
called the arc resolution spectral sequence.

A review of homology spectral sequences

Recall that a (homology) spectral sequence is a sequence of bigraded abelian groups Er =
⊕

p,q E
r
p,q ,

called pages, for r = 0, 1, 2, . . . . Each page has a differential map dr : Er → Er satisfying (dr)2 = 0,
and the page Er+1 is the homology of the complex (Er, dr), in the sense that

Er+1
p,q =

kernel of dr at Er
p,q

image of dr in Er
p,q

.

13
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In particular Er+1
p,q is always a subquotient of Er

p,q . For our spectral sequence, the differentials satisfy

dr : Er
p,q −→ Er

p−r,q+r−1.

3 E1
0,3 E1

1,3 E1
2,3 E1

3,3

2 E1
0,2 E1

1,2 E1
2,2 E1

3,2

1 E1
0,1 E1

1,1 E1
2,1 E1

3,1

0 E1
0,0 E1

1,0 E1
2,0 E1

3,0

0 1 2 3

3 E2
0,3 E2

1,3 E2
2,3 E2

3,3

2 E2
0,2 E2

1,2 E2
2,2 E2

3,2

1 E2
0,1 E2

1,1 E2
2,1 E2

3,1

0 E2
0,0 E2

1,0 E2
2,0 E2

3,0

0 1 2 3

3 E3
0,3 E3

1,3 E3
2,3 E3

3,3

2 E3
0,2 E3

1,2 E3
2,2 E3

3,2

1 E3
0,1 E3

1,1 E3
2,1 E3

3,1

0 E3
0,0 E3

1,0 E3
2,0 E3

3,0

0 1 2 3

The pages E1, E2, and E3.

Our spectral sequence has the property that the groups Er
p,q can be nonzero only when p ≥ −1 and

q ≥ 0. This implies that, at any fixed point (p, q), for r sufficiently large, either the domain or the
codomain of any differential dr to or from Er

p,q will be zero. Hence, for r large we find (upon taking
homology)

Er
p,q = Er+1

p,q = Er+2
p,q = · · ·

Recall that, in general, we call this stable group E∞p,q , and call the bigraded abelian group E∞∗,∗ the
limit of the spectral sequence. In general the sequence of groups {Er

p,q}r converges at a page r that
depends on (p, q). If there is some r such that Er

p,q = E∞p,q for all p and q, then we say that the spectral
sequence collapses on page Er.

The arc resolution spectral sequence

The following spectral sequence is described in Miller–Wilson [MW, Proposition 3.8].

Proposition XVI. (The E2 page of the arc resolution spectral sequence). Let M be a noncompact
connected smooth manifold of dimension at least two. Fix n, and fix a set S of size n. The arc resolution
spectral sequence satisfies:

E2
p,q(S) ∼=

⊕
S=PtQ,
|P |=p+1

TP ⊗HFI
0 (Hq(F•(M)))Q for p ≥ −1 and q ≥ 0

∼= IndSn

Sp+1×Sn−p−1
Tp+1 �HFI

0 (Hq(F•(M)))n−p−1.

for certain combinatorially-defined groups Tp+1. (The precise definition of these groups is not needed for our
proof, but we note that T1 = 0.)

In particular, the leftmost E2 column p = −1 are the FI–homology groups

E2
−1,q(n) ∼= HFI

0 (Hq(F•(M)))n.

The page E2
p,q = 0 for p < −1 or q < 0.

14
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4 HFI
0

(
H4(F•(M))

)
6

0 IndS6
S2×S4

T2 �HFI
0 (H4(F•(M)))4 IndS6

S3×S3
T3 �HFI

0 (H4(F•(M)))3

3 HFI
0

(
H3(F•(M))

)
6

0 IndS6
S2×S4

T2 �HFI
0 (H3(F•(M)))4 IndS6

S3×S3
T3 �HFI

0 (H3(F•(M)))3

2 HFI
0

(
H2(F•(M))

)
6

0 IndS6
S2×S4

T2 �HFI
0 (H2(F•(M)))4 IndS6

S3×S3
T3 �HFI

0 (H2(F•(M)))3

1 HFI
0

(
H1(F•(M))

)
6

0 IndS6
S2×S4

T2 �HFI
0 (H1(F•(M)))4 IndS6

S3×S3
T3 �HFI

0 (H1(F•(M)))3

0 HFI
0

(
H0(F•(M))

)
6

0 IndS6
S2×S4

T2 �HFI
0 (H0(F•(M)))4 IndS6

S3×S3
T3 �HFI

0 (H0(F•(M)))3

−1 0 1 2

Figure 8: E2
p,q(6) ∼= IndS6

Sp+1×S6−p−1
Tp+1 �HFI

0 (Hq(F•(M)))6−p−1.

We note that this description of the E2 page uses the FI]–module structure on the homology groups.

Exercise 34. Show that H0(F•(M)) ∼= M(0) as an FI–module. Deduce that the bottom
q = 0 row of the E2 page vanishes except when p = n− 1.

Our goal is to show Hq(F•(M)) is generated as an FI–module in degree ≤ 2q. Thus by Exercise 25, it
suffices to show that the first p = −1 column of the arc resolution spectral sequence vanishes at E−1,q
for all n > 2q.

The key is the following result, which follows from the Appendix of Kupers–Miller [KM]: the arc
resolution converges to zero in a range, with E∞p,q(n) vanishing for all n large enough relative to
(p, q).

Proposition XVII. (The E∞ page of the arc resolution spectral sequence). Let M be a noncompact
connected smooth manifold of dimension at least two. Fix n. Then

E∞p,q(n) = 0 for all (p, q) with p+ q ≤ n− 2.

4.3 The proof

We now have all the necessary ingredients to prove the main theorem, Theorem XIV.

Exercise 35. (a) Show that HFI
0

(
H0(F•(M))

)
n

= 0 for all n > 0.

(b) Use the arc resolution spectral sequence to proceed by induction on q, to show that

HFI
0

(
Hq(F•(M))

)
n

= 0 for all n > 2q.

Hint: Assuming by induction that the statement holds in homological degree i < q,
what are the possible differentials to or from Er

−1,q(n), for n > 2q? What is E∞−1,q(n)?
What can you conclude about

E2
−1,q(n) ∼= HFI

0 (Hq(F•(M)))n?

15
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Conclude Theorem XIV: Hq(F•(M) is an FI]–module generated in degree ≤ 2q.

Exercise* 36. Read Miller–Wilson [MW, Sections 2.2, 3.2]. Explain how to construct the
arc resolution spectral sequence as the spectral sequence associated to the semi-simplicial
space, the arc resolution.
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