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Let C,, = 41 Uy U+ - - U, be the union of n disjoint, unlinked, unknotted circles in R3. A motion of C,, is a path
of diffeomorphisms f; € Diff(R?) such that fj is the identity and f; stabilizes C,, as a set, modulo the following
equivalence relation: Motions f; o and f; 1 are equivalent if there is an isotopy f; s such that f; s and f; , stabilize
C,,. The product of two motions f; and g, is given by
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With this product, the set of homotopy classes of motions forms the string motion group ¥,,. The group identity

is called the stationary motion.

The fundamental group 71 (R3 \ C,,) is the free group F,, on n generators, and we let z; denote the generator
that is linked with v; and unlinked with the other circles. We can embed ¥, into the automorphism group Aut(F},)
by identifying each motion { f;} with the map (f1). : m1(R*\ C,,) — m1(R*\ C,,). An example of a string motion
ft, and the corresponding automorphism, is shown in the following picture:
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The image of ¥, in Aut(F),) is the subgroup of generated by elements «; ;, p;, and 7;, the automorphisms
determined as follows:
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The automorphism p; is induced by a string motion that reverses the orientation of the circle ;:
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The automorphism 7; is induced by a string motion that permutes the circles ~; with v;4; while preserving
their orientations:
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The automorphism «; ;, i # j, corresponds to a string motion where the i*" circle +; passes through the ;"
circle vy;, and returns to its original position and orientation:
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These automorphisms «; ;, i # j, generate the pure string motion group.




