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0. Introduction

LetW be an arbitrary Coxeter group. This paper is concerned with the elements w ∈W

with the property that any reduced word for w can be obtained from any other by using

only the Coxeter relations that involve commuting generators. We say that such elements

are fully commutative.

Our motivation for studying full commutativity arose from some applications we dis-

covered that involve the symmetric functions associated with the Weyl groups of type B

and D studied by Billey and Haiman [BH], Fomin and Kirillov [FK], and T. K. Lam [L].

(These applications are discussed in [Ste].) A second (related) motivation arose from the

interesting combinatorial properties of full commutativity in the symmetric group case.

For example (quoting [BJS]), the fully commutative members of Sn are the permutations

w that avoid the pattern 321 (in one-line notation). The number of these is the Cata-

lan number Cn, and there is a skew Young diagram θ naturally associated to each fully

commutative w with the property that the standard Young tableaux of shape θ are in

one-to-one correspondence with the reduced words for w.

A third motivation, valid in any Coxeter group, is the fact that full commutativity is

equivalent to several other natural combinatorial properties. For example (Theorem 2.2

below), w ∈ W is fully commutative if any only if the set of reduced words for w is

order-theoretic, by which we mean that there is a labeled partially ordered set whose

linear extensions are the reduced words for w. Also, one can show (again Theorem 2.2)

that knowledge of the fully commutative elements of W is equivalent to knowledge of the

subintervals of the weak ordering of W that are distributive lattices. (By a theorem of

Björner [Bj], one knows that every subinterval of the weak order is at least a lattice.)

In his recent Ph. D. thesis [F] (see also [F2]), C. K. Fan has independently studied the

fully commutative elements of simply-laced1 Coxeter groups with an entirely different set

of motivations in mind. Fan proves that the fully commutative elements index a basis

for a quotient of the associated Iwahori-Hecke algebra. In the symmetric group case, this

quotient is the Temperley-Lieb algebra. In the (simply-laced) Weyl group case, Fan gives

the following characterization of full commutativity: If Φ(w) is the set of positive roots

sent to negative roots by w, then w is fully commutative if and only if the root spaces

indexed by Φ(w) generate an abelian subalgebra of the associated Lie algebra. Fan also

uses this characterization as the definition for commutative elements of non simply-laced

Weyl groups, but this is not equivalent to full commutativity as we define it.

The outline of the paper is as follows. In Section 2, we prove several characterizations

of full commutativity, including the ones mentioned above. Of central importance is the

1A Coxeter group is simply-laced if the product of any pair of noncommuting generators has order 3.

2



“heap” associated to a fully commutative element w—this is a labeled partial order whose

linear extensions are the reduced words for w. In Section 3, we prove that every fully

commutative heap occurs as a convex subset of a heap with unique maximal and minimal

elements; these are the heaps of fully commutative double coset representatives of W

relative to pairs of maximal parabolic subgroups. We also prove (Theorem 3.4) that a

fully commutative element that is maximal with respect to multiplication on the right

has a heap with a “top tree” that amounts to a rooted version of the Coxeter graph.

In particular, there are no such elements unless the Coxeter graph is acyclic. We then

characterize (Theorem 3.5) the rooted trees that arise in this fashion.

In Section 4, we classify the Coxeter groups that are FC-finite (i.e., contain finitely

many fully commutative elements). This generalizes the work in [F], where Fan treats the

simply-laced case. It is interesting to note that the proof we give is self-contained, purely

combinatorial, and close to being a proof of the classification theorem for finite Coxeter

groups. (However, there do exist infinite Coxeter groups that are FC-finite.)

In Section 5, we classify the parabolic quotients of Coxeter groups whose members

are all fully commutative. The result is that aside from a few exceptional cases, the

irreducible quotients with this property arise from orbits of minuscule weights in finite Weyl

groups and Coxeter groups in which every edge of the Coxeter graph has infinite weight.

Among the finite Weyl groups, this classification coincides with Proctor’s classification

of the parabolic quotients of Weyl groups whose Bruhat ordering is a lattice [P]. In the

final section, we extend Proctor’s result by classifying all parabolic quotients of arbitrary

Coxeter groups such that (1) the Bruhat ordering is a lattice, (2) the Bruhat ordering

is a distributive lattice, (3) the weak ordering is a distributive lattice, and (4) the weak

ordering and Bruhat ordering coincide. Interestingly, one finds that all four classification

problems have the same answer.

1. Preliminaries

Throughout this paper, W shall denote a Coxeter group with finite generating set S

and Coxeter matrix M = [m(s, t)]s,t∈S . Thus m(s, t) is the order of st in W (possibly

m(s, t) = ∞). We let Γ denote the Coxeter graph of (W,S); i.e., the simple graph with

vertex set S and edges between pairs of non-commuting generators. By the Coxeter

diagram, we mean the pair (Γ,M), regarding M as a weight function on the edges of Γ.

1.1 Commutativity classes.

Let S∗ denote the free monoid generated by S. We will represent the members of S∗

as sequences, so that s = (s1, . . . , sl) would be typical. By a subword of s, we shall mean

a subsequence of s occupying consecutive positions, such as (si, si+1, . . . , sj). Also, for
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integers m ≥ 0 and s, t ∈ S, let us define

〈s, t〉m = (s, t, s, t, s, . . .︸ ︷︷ ︸
m

) ∈ S∗.

For w ∈ W , let ℓ(w) denote the minimum length of any expression w = s1 · · · sl with
si ∈ S. Any such minimum-length expression for w is said to be reduced. It will be

convenient more generally to declare any expression of the form w = w1 · · ·wl with wi ∈W

to be reduced if ℓ(w) = ℓ(w1) + · · ·+ ℓ(wl). We let R(w) ⊂ S∗ denote the set of all words

s = (s1, . . . , sl) such that w = s1 · · · sl and the expression is reduced.

Let ≈ denote the congruence on S∗ generated by the braid relations

〈s, t〉m(s,t) ≈ 〈t, s〉m(s,t)

for all s, t ∈ S such that m(s, t) <∞. Of central importance for this paper is the fact that

if s is any particular reduced word for w, then R(w) is the equivalence class of s relative

to ≈; i.e., any reduced word for w can be obtained from any other by means of the braid

relations [B, §IV.1.5].
Now consider the weaker congruence ∼ on S∗ generated by the braid relations corre-

sponding to pairs of commuting generators (i.e., the relations (s, t) ∼ (t, s) for all s, t ∈ S

such that m(s, t) = 2). We remark that the quotient monoids S∗/∼, known in the liter-

ature as free partially abelian monoids, or commutation monoids, were first studied in a

systematic way by Cartier and Foata [CF]. (See also the survey in [V].)

The equivalence class C of a given reduced word s (relative to ∼) consists of the words

obtainable from s by transposing adjacent commuting pairs. We call C the commutativity

class of s. Since ∼ is weaker than ≈, it is clear that there is a decomposition

R(w) = C1 ∪̇ · · · ∪̇ Cl

of R(w) into commutativity classes. If R(w) consists of just one commutativity class, we

say that w is fully commutative.

Proposition 1.1. An element w ∈W is fully commutative if and only if for all s, t ∈ S

such that 3 ≤ m(s, t) < ∞, there is no member of R(w) that contains 〈s, t〉m(s,t) as a

subword.

Proof. Given the fact that any reduced word can be obtained from any other via the

braid relations, the sufficiency of the stated condition is clear. To prove that it is also

necessary, suppose that s is a reduced word for some w ∈ W , and that s, t ∈ S are such
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that 3 ≤ m(s, t) < ∞. Every member of the commutativity class of s can be obtained

by exchanging adjacent pairs of letters not including the pair s, t. It follows that the

subsequence of s formed by the occurrences of s and t is an invariant of the commutativity

class of s. Therefore, if s contains 〈s, t〉m as a subword (where m = m(s, t)), then the

reduced word s′ obtained by applying the braid relation 〈s, t〉m ≈ 〈t, s〉m belongs to a

different commutativity class, and hence w could not be fully commutative. □

1.2 Heaps.

Let s = (s1, . . . , sl) be an arbitrary (i.e., not necessarily reduced) word in S∗. Define a

partial ordering ≼ on [ l ] = {1, 2, . . . , l} via the transitive closure of the relations

i ≺ j if i < j and m(si, sj) 6= 2.

In particular, i ≺ j if i < j and si = sj . The triple Ps = ([ l ],≼, s) can be regarded as a

labeled poset (i.e., a partial order in which the elements have special labels), the label of

the ith vertex being si. Following the terminology of [V], we call Ps the heap of s.

Let P be any partial ordering of [ l ]. By a linear extension of P , we mean a total

ordering π = (π(1), . . . , π(l)) of [ l ] consistent with P ; i.e., π(i) < π(j) in P implies i < j.

We let L(P ) denote the set of all linear extensions of P . Regarding s as a labeling of P

(i.e., the element i has label si), it is convenient to define

L(P, s) = {(sπ(1), . . . , sπ(l)) ∈ S∗ : π ∈ L(P )}.

In the case of a heap, the elements with the same label are totally ordered, so there is

at most one linear extension corresponding to any given word in S∗. We will refer to the

members of L(P, s) as labeled linear extensions of P .

The following result is a standard part of the theory of heaps (e.g., see Lemma 3.2 of [V]

or Exercise 3.48(b) of [St]).

Proposition 1.2. For s ∈ S∗, L(Ps, s) is the commutativity class of s.

Proof. Suppose that s′ = (s′1, . . . , s
′
l) ∈ L(Ps, s) and that π ∈ L(Ps) is the corresponding

linear extension. Since adjacent elements in a linear extension must either be incomparable

or a covering pair, it follows that for every k < l, either π(k) and π(k+1) are incomparable

in Ps, or else s′k and s′k+1 do not commute. Therefore, the interchange of any pair of

adjacent commuting generators in s′ corresponds to the interchange of a pair of adjacent

incomparable elements in π, and hence yields another (labeled) linear extension of Ps.

Since s ∈ L(Ps, s), it follows that L(Ps, s) contains the commutativity class of s.
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Conversely, to prove that L(Ps, s) only contains elements from the commutativity class

of s, we proceed by induction on the length of s. Suppose that π and s′ are as above.

Since i = π(l) is a maximal element of Ps, si must commute with sj for all j > i, so

s ∼ s′′ = (s1, . . . , si−1, si+1, . . . , sl, si). However, (s′1, . . . , s
′
l−1) is a labeled linear extension

of the heap of (s1, . . . , si−1, si+1, . . . , sl), so by induction we obtain s′ ∼ s′′ and the result

follows. □

We remark that Ps is an invariant of the commutativity class of s in the sense that

if s ∼ s′, then there exists a poset isomorphism φ : Ps → Ps′ such that si = s′φ(i).

In particular, if w is fully commutative, the heaps of the reduced words for w are all

equivalent, so we may speak of the heap of w without ambiguity.

1.3 The weak order.

The (right) weak ordering of (W,S), denoted ≤R, is defined to be the transitive closure

of the relations w <R ws for all w ∈ W , s ∈ S such that ℓ(w) < ℓ(ws). Equivalently, for

all x, y ∈ W one has x ≤R xy if and only if xy is reduced (i.e., ℓ(xy) = ℓ(x) + ℓ(y)). The

left weak ordering is defined similarly—one has y ≤L xy if and only if xy is reduced. We

remark that the map w 7→ w−1 provides an isomorphism between the left and right weak

orderings of W . Apart from the special case of symmetric groups, the weak ordering of

Coxeter groups seems to have been first studied by Björner [Bj].

Proposition 1.3. For all x, y ∈W such that x ≤R y, we have

{w ∈W : x ≤R w ≤R y} ∼= {w ∈W : w ≤R x−1y}

as subposets of (W,≤R).

Proof. The map w 7→ x−1w is easily shown to be an isomorphism. □

Note that an immediate consequence of Proposition 1.1 is the fact that if w is fully

commutative and w′ ≤R w, then w′ is also fully commutative; i.e.,

Proposition 1.4. The set of fully commutative elements of W forms an order ideal

with respect to the right (or left) weak order.

For w ∈ W , let DR(w) = {s ∈ S : ℓ(ws) < ℓ(w)} and DL(w) = {s ∈ S : ℓ(sw) < ℓ(w)}
denote the right and left descent sets for w, respectively. It is well-known (e.g., [H, §1.10])
that for all J ⊂ S,

W J = {w ∈W : s ∈ J ⇒ ℓ(ws) > ℓ(w)} = {w ∈W : DR(w) ∩ J = ∅}
JW = {w ∈W : s ∈ J ⇒ ℓ(sw) > ℓ(w)} = {w ∈W : DL(w) ∩ J = ∅}
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are, respectively, left and right coset representatives for the parabolic subgroup WJ gen-

erated by J . Let us also note that for I, J ⊂ S,

IW J = IW ∩W J = {w ∈W : DL(w) ∩ I = DR(w) ∩ J = ∅}

forms a set of double coset representatives for WI\W/WJ .

Proposition 1.5. For J ⊂ S, JW (resp., W J) is an order ideal of the right (resp.,

left) weak ordering of W .

Proof. Let w ∈ JW . If w′ ≤R w, then there exists a reduced expression w = w′x for

some x ∈ W . Hence for any s ∈ J , sw = sw′x is reduced, so sw′ is reduced. In other

words, ℓ(sw′) > ℓ(w′) for all s ∈ J , so w′ ∈ JW . □

It should be noted that W J need not be an order ideal of the right weak order.

We remark that if W is finite, with w0 ∈ W being the longest element, the fact that

ℓ(w0x) = ℓ(xw0) = ℓ(w0)− ℓ(x) for all x ∈W (e.g., [H, §1.8]) shows that w0 is the unique

maximal element of W with respect to ≤R and ≤L. More generally, if wJ
0 ∈ W J denotes

the left coset representative for w0, we have the following.

Proposition 1.6. For J ⊂ S, wJ
0 is the unique maximal element of (W J ,≤L).

Proof. Let x0 denote the longest element of WJ . Given w ∈ W J , the expression wx0

must be reduced (otherwise by the deletion property [H, §5.8], w would not be the shortest

member of its coset). Similarly, the expression w0 = wJ
0 x0 must be reduced. Therefore

wx0 ≤L w0 = wJ
0 x0, and hence also w ≤L wJ

0 . □

2. Characterizations of full commutativity

For any partial order P , let J(P ) denote the distributive lattice of order ideals of P .

Lemma 2.1. Let w ∈ W be of length l. If P is a partial order of [ l ] and s ∈ S∗ is a

labeling such that R(w) = L(P, s), then {x ∈W : x ≤R w} ∼= J(P ) as posets.

Proof. We claim that for s ∈ S, Cs := {i : si = s} is a totally ordered subset of P .

Indeed, if i and j were incomparable and si = sj = s, then there would exist a linear

extension of P in which i and j appear consecutively. However, the corresponding word in

S∗ would have two consecutive occurrences of s, and hence could not be a reduced word

for w, proving the claim.

Now let s(i) denote the ith smallest member of the chain Cs, relative to P . For any

s′ ∈ S∗, define ν(s, s′) to be the number of occurrences of s in s′.
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Suppose that s′ is a reduced word for some x ≤R w. Since any reduced word for x

can be completed to a reduced word for w, it follows that s′ is an initial segment of some

labeled linear extension of P , and hence

I(s′) := {s(i) : i ≤ ν(s, s′), s ∈ S}

is an order ideal of P . Furthermore, we claim that if s′′ is another reduced word for x,

then I(s′) = I(s′′). If not, then it would be necessary that ν(s, s′) 6= ν(s, s′′) for some

s ∈ S. Since the suffix of any completion of s′ to a reduced word for w can also be used as

the suffix for a completion of s′′, it follows that there exist reduced words for w in which

the multiplicity of s varies. However by assumption, R(w) = L(P, s), so every reduced

word for w must be a permutation of s.

We can thus use I(x) to denote the common value of I(s′) for s′ ∈ R(x). We claim that

the map x 7→ I(x) defines an order-isomorphism between {x ∈W : x ≤R w} and J(P ).

To prove this, we first note that the map is order-preserving. Indeed, given any covering

relation x <R xs, we can choose a reduced word for x and complete it to a reduced word

for xs by appending s, and therefore I(x) ⊂ I(xs).

To prove that the map is surjective, let I be an order ideal of P . One can find s′ ∈ L(P, s)
so that some initial segment of s′, say s′′, is a labeled linear extension of I. However by

hypothesis, s′ must be a reduced word for w. Hence s′′ must be a reduced word for some

x ≤R w and I = I(s′′) = I(x).

To prove that the map is injective, suppose that I(x) = I(y) = I for some x, y ≤R w.

In that case, there must exist a labeled linear extension of I belonging to R(x). Any

completion of this to a labeled linear extension of P (thus yielding a reduced word for w)

must be a reduced word for x−1w. On the other hand, since I(y) = I, the same argument

proves that it must also be a reduced word for y−1w, so x = y. □

Let us declare a subset R of S∗ to be order-theoretic if there exists a partial ordering

P of [ l ] for some integer l ≥ 0 and a labeling s ∈ S∗ of P so that R = L(P, s).

Theorem 2.2. For w ∈W , the following are equivalent:

(a) w is fully commutative.

(b) {x ∈W : x ≤R w}, as a subposet of (W,≤R), is a distributive lattice.

(c) {x ∈W : x ≤R w} ∼= J(Ps) for some (equivalently, every) s ∈ R(w).
(d) R(w) is order-theoretic.
(e) R(w) = L(Ps, s) for some (equivalently, every) s ∈ R(w).

Proof. The implications (c)⇒(b) and (e)⇒(d) are immediate, (e)⇒(c) and (d)⇒(b) are

special cases of Lemma 2.1, and (a)⇒(e) follows from Proposition 1.2. To complete the
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proof, it therefore suffices to establish (b)⇒(a). For this, assume towards a contradiction

that {x ∈ W : x ≤R w} is a distributive lattice, but that w is not fully commutative.

Among all such counterexamples, assume that w is one that minimizes length. By Propo-

sition 1.1, there must exist a reduced word s ∈ R(w) and a pair s, t ∈ S such that

〈s, t〉m occurs as a subword of s, where m = m(s, t) and 3 ≤ m < ∞. However, Propo-

sition 1.3 shows that if w′ ∈ W has a reduced word that occurs as a subword of s, then

{x ∈ W : x ≤R w′} is order-isomorphic to a subinterval of {x ∈ W : x ≤R w}. Since

subintervals of distributive lattices are also distributive, the minimality of ℓ(w) forces

s = 〈s, t〉m; i.e., w must be the longest element of the dihedral Coxeter group generated

by {s, t}. Since the weak ordering of such Coxeter groups is transparently not distributive

for m ≥ 3 (e.g., see Figure 1(a) for the case m = 4), we obtain a contradiction. □

A subset C of a partial order P is said to be convex if i, j ∈ C and i < k < j in P

implies k ∈ C. The following result provides an intrinsic characterization of the heaps of

fully commutative elements.

Proposition 2.3. The heap P of a word s ∈ S∗ is the heap of some fully commutative

w ∈W if and only if

(a) There is no convex chain i1 < · · · < im in P such that si1 = si3 = · · · = s and

si2 = si4 = · · · = t, where 3 ≤ m = m(s, t) <∞.

(b) There is no covering relation i < j in P such that si = sj .

Proof. For any convex chain (or covering relation) of a poset P , there exist linear

extensions in which the members of the chain appear consecutively. Thus if s is a reduced

word for some fully commutative w ∈W , Proposition 1.1 implies the necessity of (a). Since

no reduced word can have two equal adjacent terms, (b) is also necessary. Conversely,

given (a), Proposition 1.2 implies that the commutativity class of s has no members that
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contain 〈s, t〉m as a subword, for all s, t ∈ S such that m = m(s, t) ≥ 3. Therefore, the

equivalence class of s relative to the braid relations is the same as its commutativity class.

If follows that P is the heap of some fully commutative member of W , provided that s is

a reduced word. However, this additional property is a consequence of (b). □

3. Special properties

Suppose that P is the heap of (a reduced word for) some fully commutative w ∈ W .

Recall that for each s ∈ S, the members of P with label s form a chain. It will be

convenient for what follows to let s(i) denote the ith greatest member of this chain with

respect to P . (This is dual to the notation used in the proof of Lemma 2.1, but should

not cause confusion.)

Lemma 3.1. Let s ∈ S, and let w ∈W be fully commutative with heap P . If ws is not

fully commutative, then ws is reduced and there is a unique t ∈ S such that m(s, t) ≥ 3

and s(1) < t(1) in P . Moreover, m(s, t) <∞ and

s(k) < t(k) < s(k−1) < t(k−1) < · · · < s(1) < t(1) (if m(s, t) = 2k + 1)

t(k) < s(k−1) < t(k−1) < · · · < s(1) < t(1) (if m(s, t) = 2k),

is a convex chain in P .

Proof. Since the fully commutative part of W is an order ideal with respect to ≤R

(Proposition 1.4), it follows that if ws is not fully commutative, then ws is reduced. Now

let P0 be the heap obtained from P by appending s at the end of a reduced word for w,

and let s(0) denote the new vertex. For ws to not be fully commutative, it is necessary by

Proposition 2.3 that for some generator t ∈ S such that 3 ≤ m(s, t) <∞, we have

s(k) < t(k) < · · · < s(1) < t(1) < s(0) (if m(s, t) = 2k + 1)

t(k) < · · · < s(1) < t(1) < s(0) (if m(s, t) = 2k)

occurring as a convex chain in P0. If there were another t′ ∈ S such that m(s, t′) ≥ 3 (or

m(s, t′) = ∞) and s(1) < (t′)(1) in P , then we would have s(1) < (t′)(1) < s(0) in P0, so

the above chain would not be convex. □

3.1 Reduction to maximal quotients.

For s ∈ S, let 〈s〉 = S − {s}. Note that the maximal quotient W ⟨s⟩ consists of the

identity element, together with those w ∈W with the property that every s ∈ R(w) ends
with s. The fully commutative elements with this property are characterized by the fact

that their heaps have a maximum element with label s.
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Theorem 3.2. If W is irreducible and w ∈ W is fully commutative, then there exists

a fully commutative w′ ≥R w such that w′ ∈W ⟨s⟩ for some s ∈ S.

Proof. Let s be a reduced word for w and P = Ps the heap of w. We may assume that

every s ∈ S appears in s, since if s does not appear, then ws >R w and ws is still fully

commutative.

Let D = DR(w) ⊂ S denote the right descent set of w. Thus s ∈ D if and only if s(1)

is maximal in P . If D = {s} is a singleton, then w ∈ W ⟨s⟩ and there is nothing more to

prove. Otherwise, let us define the separation of D to be the minimum distance in the

Coxeter graph Γ among all pairs of elements in D. (Note that Γ is connected since W is

assumed to be irreducible.) We claim that there exists a fully commutative w′ >R w such

that either |DR(w
′)| < |DR(w)|, or else |DR(w

′)| = |DR(w)| and DR(w
′) has a smaller

separation than DR(w). By iteration, this result would establish the existence of a fully

commutative w′ >R w such that |DR(w
′)| = 1, thereby completing the proof.

To prove the claim, consider a pair s, t ∈ D whose distance in Γ is minimal, and let

s = s0, s1, . . . , sl = t be a shortest path from s to t. It is necessary that m(si−1, si) ≥ 3

for 1 ≤ i < l, m(si, sj) = 2 for |i− j| > 2 (otherwise the path is not minimal), and l ≥ 2

(otherwise, s(1) and t(1) would be comparable in P and hence could not both be maximal).

In particular, since si−1 and si do not commute, s
(1)
i−1 and s

(1)
i must be comparable in P .

Bearing in mind that s(1) and t(1) are both maximal in P , it follows that there must exist

an index i such that

s
(1)
0 > s

(1)
1 > · · · > s

(1)
i < s

(1)
i+1.

In particular, there are (at least) two elements greater than s
(1)
i in P whose labels do not

commute with si. Thus wsi is reduced and (by Lemma 3.1) fully commutative. Further-

more, in the heap of wsi, we have

s
(1)
0 > s

(1)
1 > · · · > s

(1)
i−1 < s

(1)
i .

Hence by similar reasoning, wsisi−1 is reduced and fully commutative. Iterating this

reasoning, we obtain that w′ := wsisi−1 . . . s1 is reduced and fully commutative. Moreover,

we have s = s0 6∈ DR(w
′), and there is only one element (namely, s1) of DR(w

′) not in

DR(w), so |DR(w
′)| ≤ |DR(w)|. If equality occurs, then we have s1, t ∈ DR(w

′) and the

separation of DR(w
′) is at most l − 1. □

Let ≤LR denote the partial order on W generated by the union of the left and right

weak orders; i.e., the transitive closure of the relations x <LR xy and y <LR xy for all

x, y ∈ W such that xy is reduced. It is clear that the fully commutative elements of W

11



form an order ideal with respect to <LR. The following result shows that this order ideal

is generated by members of the maximal two-sided quotients of W .

Corollary 3.3. If W is irreducible and w ∈W is fully commutative, then there exists

a fully commutative w′ ≥LR w such that w′ ∈ ⟨s⟩W ⟨t⟩ for some s, t ∈ S.

Proof. By Theorem 3.2, there is a fully commutative w′ ≥R w such that w′ ∈W ⟨s⟩ for

some s ∈ S. It follows that s(1) is the unique maximal element of the heap of w′. Without

loss of generality, we can assume that every member of S occurs in some (equivalently,

every) reduced word for w′, so that adding elements at the bottom of the heap will not

change the fact that s(1) is the unique maximal element of the heap. In other words, for

every fully commutative w′′ ≥L w′, we have w′′ ∈ W ⟨s⟩. However, by the dual version of

Theorem 3.2, we can find a fully commutative w′′ ≥L w′ such that w′′ ∈ ⟨t⟩W for some

t ∈ S, and thus w′′ ∈ ⟨t⟩W ∩W ⟨s⟩ = ⟨t⟩W ⟨s⟩. □

3.2 The top tree of a maximal element.

By an ordering of a tree T with vertex set S, we mean a partial ordering of S obtained

by choosing a special vertex s0 ∈ S, and declaring s < t if t is on the unique path from s

to s0. The Hasse diagram of such an ordering is the tree T , rooted at s0.

Let w ∈ W be fully commutative with heap P . We will say that w is right-maximal

(resp., left-maximal) if for every s ∈ S, ws (resp., sw) is either not reduced or not fully

commutative. In other words, w is maximal in the right (resp., left) weak order with

respect to full commutativity. In case w is right-maximal, it will be convenient to define

P (1) = {s(1) : s ∈ S}, a subposet of P . (We will sometimes abuse this notation and regard

P (1) as a partial order on S.) It should be noted that every generator must occur in any

reduced word for a right-maximal element, so s(1) is indeed defined for all s ∈ S.

The following result explains why we refer to P (1) as the top tree.2

Theorem 3.4. Assume that W is irreducible. If w ∈ W is fully commutative and

right-maximal with heap P , then the Coxeter graph Γ is a tree, P (1) is an order filter of

P , and P (1) is an ordering of the tree Γ.

Proof. Choose s ∈ S, and suppose that t(i) covers s(1) in P for some t ∈ S and i ≥ 1. It

follows that s(1) < t(i) ≤ t(1) in P and m(s, t) ≥ 3. Since ws cannot be fully commutative,

Lemma 3.1 implies that the two-element chain s(1) < t(1) must be convex (i.e., a covering

relation) in P , and therefore i = 1. In other words, the only members of P that cover s(1)

are members of P (1); thus P (1) is an order filter of P .

2We thank R. Proctor for suggesting this terminology.
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A second consequence of Lemma 3.1 is that there can be at most one element covering

s(1) in P . Since Theorem 3.2 implies that the heap of a right-maximal w has a unique

maximal element, it follows that P (1) is an ordering of some tree. Hence to complete the

proof, we must show that this tree is Γ. Certainly it is true that every covering relation of

P (1) must involve a pair of elements whose labels are non-commuting generators—these are

the adjacent pairs in Γ. Conversely, given a pair of non-commuting generators s, t ∈ S, it

must be the case that s(1) and t(1) are comparable in P ; say s(1) < t(1). In that case, since

ws cannot be fully commutative, Lemma 3.1 implies that t(1) must be the only element

greater than s(1) in P whose label does not commute with s, so it must cover s(1). □

3.3. The classification of top trees.

If Q is an ordering of a tree on the vertex set S, we will use the notation t ← s to

indicate the covering relation of Q; i.e., t < s in Q and s, t are adjacent in the tree.

The following result describes the irreducible Coxeter groups that contain right-maximal

fully commutative elements, as well as the top trees of all such elements. Of course by

the previous result, we know that W cannot contain any left- or right-maximal elements

unless the Coxeter graph Γ is a tree, but this is far from sufficient.

Theorem 3.5. Assume that Γ is a tree, and let Q be an ordering of Γ. There exists a

fully commutative right-maximal w ∈ W with top tree Q (i.e., P (1) = Q for the heap P

of w) if and only if the following conditions are satisfied for all s, t, u ∈ S:

(a) m(s, t) <∞.

(b) If t← s, u← s and t 6= u, then m(s, t) = m(s, u) = 3.

(c) If u← t← s, then m(s, t) ≤ 4.

(d) If u← t← s and m(s, t) = 4, then m(t, u) = 3.

Proof. We first prove that conditions (a)–(d) are necessarily satisfied by any right-

maximal w ∈W with heap P such that Q = P (1).

(a) If s, t ∈ S are such that m(s, t) ≥ 3, then either s(1) < t(1) or t(1) < s(1). Assuming

the latter, wt must be reduced and therefore cannot be fully commutative. However by

Lemma 3.1, this is possible only if m(s, t) <∞.

(b) Assume towards a contradiction that t ← s, u ← s, t 6= u, and m(s, t) ≥ 4. In

that case, wt is reduced and therefore cannot be fully commutative. Thus by Lemma 3.1,

s(2) < t(1) < s(1) must occur as a convex chain in P . However, u ← s implies that

u(1) < s(1) is a covering relation of P . Since u(1) and s(2) must be comparable, we therefore

have s(2) < u(1) < s(1), so the chain s(2) < t(1) < s(1) is not convex, a contradiction.

(c) Assume towards a contradiction that u← t← s and m(s, t) ≥ 5. As in the previous

case, it follows that wt is reduced and therefore cannot be fully commutative. Thus by

13



Lemma 3.1, t(2) < s(2) < t(1) < s(1) must occur as a convex chain in P . However, u ← t

implies that u(1) < t(1) is a covering relation of P . Since u(1) and t(2) must be comparable,

it follows that t(2) < u(1) < t(1), so the chain t(2) < s(2) < t(1) < s(1) is not convex, a

contradiction.

(d) Assume towards a contradiction that u ← t ← s, m(s, t) = 4, and m(t, u) ≥ 4. In

this case, both wt and wu are reduced and hence neither can be fully commutative. By

Lemma 3.1, it follows that both s(2) < t(1) < s(1) and t(2) < u(1) < t(1) must occur as

convex chains in P . In particular, s(2) < t(1) must be a covering relation. However, s(2)

and t(2) must be comparable, so t(2) < s(2) < t(1), contradicting the convexity of the chain

t(2) < u(1) < t(1).

For the converse, we assume (a)–(d) and construct a right-maximal w ∈ W with top

tree Q, by induction on |S|. If |S| = 1, the nonidentity member of W suffices. If |S| = 2,

then (a) implies that W is a finite dihedral group, and it is straightforward to construct a

suitable element w in this case.

Otherwise, we have |S| ≥ 3. Let s ∈ S denote the root of Q, and let Q1, . . . , Qk denote

the ordered subtrees obtained by deleting the root from Q. Each subtree has a root si ∈ S.

Furthermore, the parabolic subgroups Wi generated by each Qi commute with each other.

By induction, we can find a fully commutative right-maximal element wi (relative to Wi)

with top tree Qi, for each i.

Case 1: k ≥ 2, or k = 1 and m(s1, s) = 3. Consider w = w1 · · ·wks. Since s does

not occur in any reduced expression for wi, it is clear that w is fully commutative. To

prove that w is right-maximal, choose t ∈ S and consider wt. If t = s, then wt is not

reduced. If t is an internal vertex of Qi, then witi is reduced and hence cannot be fully

commutative, since wi is right-maximal for Wi. Hence, wt = w1 · · · (witi) · · ·wks cannot

be fully commutative. The remaining possibility is that t = si for some i. If k ≥ 2, then

(b) implies m(si, s) = 3; otherwise, if k = 1 then we have m(si, s) = 3 by hypothesis.

Since si is the root of Qi, every reduced word for wi ends with si, so wissi is not fully

commutative, so wt = wsi is not fully commutative. Thus w is indeed right-maximal, and

it is clear that Q is the top tree of w.

Case 2: k = 1 and m(s1, s) = 4. (Since Q1 has two or more elements, (c) implies

that this is the only remaining possibility.) Since s1 is the root of Q1, there is a reduced

expression for w1 of the form w1 = w′
1s1, where w′

1 ∈ W1. Consider w = w′
1ss1s. Since

w′
1s is reduced (s does not occur in w′

1) and w′
1s1 is reduced, it follows that w′

1 is the

shortest representative of its left coset, relative to the parabolic subgroup generated by

{s, s1}. In particular, the expression w′
1ss1s is reduced.

We claim that w is fully commutative. To see this, we argue incrementally as follows.

14



First, w′
1s is fully commutative, since s 6∈ W1. Second, w′

1ss1 is fully commutative, since

otherwise Lemma 3.1 (and the fact that m(s1, s) = 4) would imply that some reduced

expression for w′
1 must involve s. Finally, it follows that w = w′

1ss1s is fully commutative,

since otherwise by Lemma 3.1, s
(2)
1 < s(1) < s

(1)
1 must be a convex chain in the heap of

w′
1ss1. Hence there would be a reduced expression for w′

1 ending with s1, contradicting

the fact that w′
1s1 is reduced.

Finally, we claim that w is right-maximal. For this, choose t ∈ S and consider wt. If

t = s, then wt is not reduced. If t = s1, then wt = w′
1ss1ss1 is transparently not fully

commutative. Otherwise, t is an internal vertex of Q1. In particular, it commutes with s,

and by maximality of w1, w1t = w′
1s1t is not fully commutative. If t also commutes

with s1, then w′
1t must also not be fully commutative, and hence wt = w′

1tss1s is not fully

commutative. Otherwise, by (d) we have m(s1, t) = 3 and Lemma 3.1 implies that there

is a reduced expression for w′
1 ending with t. Therefore, there is a reduced expression for

wt ending with tss1st = sts1ts, which is not fully commutative. □

4. The classification of FC-finite Coxeter groups

We will say that W is FC-finite if the number of fully commutative w ∈ W is finite.

The simply-laced FC-finite Coxeter groups were classified by Fan in his thesis [F]; in the

following, we treat the general case. It is interesting to note that there are no “exceptional”

FC-finite Coxeter groups, in the sense that the irreducible ones occur in seven naturally

identifiable infinite families. (See Figure 2.)

Theorem 4.1. The irreducible FC-finite Coxeter groups are An (n ≥ 1), Bn (n ≥ 2),

Dn (n ≥ 4), En (n ≥ 6), Fn (n ≥ 4), Hn (n ≥ 3), and I2(m) (5 ≤ m <∞).

Before beginning the proof, let us outline the strategy. First, we derive a list of necessary

conditions that collectively eliminate all Coxeter groups not named in the above list. For

the converse, it is well known and easy to show that the groups An, Bn, Dn and I2(m)

(m <∞) are finite (and hence, FC-finite), so we confine our attention to proving that the

groups En, Fn and Hn are FC-finite.

Proof. Assume that W is irreducible and FC-finite.

(1) Γ must be acyclic. Indeed, suppose that s1, . . . , sn ∈ S form a circuit of Γ, so that

si and si+1 do not commute for 1 ≤ i ≤ n (subscripts taken modulo n). It follows that

any initial segment of the word

(s1, s2, . . . , sn, s1, s2, . . . , sn, . . . )
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Figure 2: The FC-finite Coxeter groups.

has no subwords of the form 〈s, t〉m with m = m(s, t). Hence, any such word is not merely

reduced, it is also rigid; i.e., it is the unique reduced word for some w ∈W . In particular,

any such w is fully commutative, so W could not be FC-finite.

(2) Every edge of Γ has finite weight. If m(s, t) = ∞, then any initial segment of the

infinite word (s, t, s, t, s, t, . . . ) is rigid.

(3) Γ has at most one edge of weight ≥4. Otherwise, there exists a path s1, . . . , sn in

Γ such that n ≥ 3, m(s1, s2) ≥ 4, and m(sn−1, sn) ≥ 4. However in that case, any initial

segment of the following infinite word is rigid:

(s1, s2, . . . , sn−1, sn, sn−1, . . . , s2, s1, s2, . . . , sn−1, sn, sn−1, . . . , s2, s1, s2, . . . ).

We remark that an alternative proof of (1) and (2) is provided by the fact that any FC-

finite Coxeter group must contain right-maximal fully commutative elements, and hence

must satisfy the conditions of Theorems 3.4 and 3.5. We also remark that it is not hard

to show that properties (1)–(3) characterize the (irreducible) Coxeter groups with finitely

many rigid elements.

(4) Γ has no vertex of degree ≥4, and at most one vertex of degree 3. Otherwise, Γ

contains an induced subgraph isomorphic to the one indicated in Figure 3(a); the existence
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of a vertex of degree 4 corresponds to the case n = 5. Now consider the infinite word

(s1, s2, s3, . . . , sn−2, sn−1, sn, sn−2, . . . , s3, s1, s2, s3 . . . , sn−2, sn−1, sn, sn−2, . . . ).

The only subwords of the form 〈s, t〉m with m = m(s, t) that occur in this word involve

the commuting pairs (s1, s2) and (sn−1, sn). Since this property is preserved when any of

these pairs are transposed, it follows that every initial segment of this word is reduced and

fully commutative.

(5) Γ cannot have both a vertex of degree 3 and an edge of weight ≥4. Otherwise,

Γ contains an induced subgraph isomorphic to the one indicated in Figure 3(b), with

m(s1, s2) ≥ 4 and n ≥ 4. In this case, consider the infinite word

(s1, s2, . . . , sn−2, sn−1, sn, sn−2, . . . , s2, s1, s2, . . . , sn−2, sn−1, sn, sn−2, . . . ).

The only subwords of the form 〈s, t〉m with m = m(s, t) that occur in this word involve

the commuting pair (sn−1, sn). Since this property is preserved when any of these pairs

are transposed, it follows that every initial segment of this word is reduced and fully

commutative.

Assuming W 6= A1, properties (1)–(5) imply that the Coxeter diagram (Γ,M) must be

isomorphic to a member of one of the families Y (p, q, r) or I(p, q;m) indicated in Figure 4,

with p, q, r ≥ 1. Note that in the former case, every edge has weight 3; in the latter case,

one edge has weight m for some (finite) m ≥ 3, and the remainder have weight 3.
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(6) If max(p, q) ≥2 and m ≥6, then I(p, q;m) is not FC-finite. Indeed, if the generators

are labeled so that m(s1, s2) ≥ 6 and m(s2, s3) = 3, then the infinite word

(s2, s1, s3, s2, s1, s2, s1, s3, s2, s1, s2, s1, s3, s2, . . . )

has the property that the only subwords of the form 〈s, t〉m with m = m(s, t) that occur in-

volve the commuting pair (s1, s3). Furthermore, when any of these pairs are interchanged,

the longest alternating (s1, s2)-subword has length 5, and the occurrences of (s2, s3) and

(s3, s2) remain disjoint. Hence, any initial segment of this word is reduced and fully com-

mutative. It follows that if Γ has an edge of weight ≥ 6, then W must be one of the (finite)

dihedral groups I2(m).

(7) If p, q ≥2, then I(p, q;5) is not FC-finite. We can assume that the generators are

labeled so that m(s1, s
′
1) = 5, with s1, s2, . . . and s′1, s

′
2, . . . forming the two “branches” of

the Coxeter graph. Again we claim that there is an infinite word whose initial segments

are reduced words for fully commutative members of W . However in this case, it is more

helpful to describe the heap of this infinite word: See Figure 5. (Note that the vertices

of the heap have been assigned the labels of the corresponding generators.) One merely

needs to check that this poset satisfies the criterion of Proposition 2.3. Once this is done,

it follows that every (finite) order ideal of this poset is the heap of some fully commutative

element. Thus if the group W = I(p, q; 5) is FC-finite, it is necessary that min(p, q) = 1;

however in that case, W ∼= Hp+q.

(8) If p, q ≥3, then I(p, q;4) is not FC-finite. Let us continue the labeling of the

generators established in (7), except that we now have m(s1, s
′
1) = 4. In this case, the

infinite heap of Figure 6 satisfies the conditions of Proposition 2.3, and hence proves that

the group in question is not FC-finite. It follows that if W = I(p, q; 4) is FC-finite, then

min(p, q) = 1 or 2. However in that case, W is isomorphic to Bp+q or Fp+q.

The only remaining groups of the form I(p, q;m) are those for which m = 3; however,

these are Coxeter groups of type A.

(9) If p, q, r ≥2, then Y (p, q, r) is not FC-finite. Let us suppose that the generators

are labeled so that s0 is the vertex of degree 3, with s1, s2, . . . ; s
′
1, s

′
2, . . . ; and s′′1 , s

′′
2 , . . .

forming the three branches of Γ. In this case, the infinite heap of Figure 7 proves that

these groups cannot be FC-finite.

(10) If p, q ≥3 and r ≥1, then Y (p, q, r) is not FC-finite. Continuing the labeling used

in (9), the infinite heap of Figure 8 proves that these groups cannot be FC-finite.

Properties (9) and (10) prove that if W = Y (p, q, r) is FC-finite and p ≥ q ≥ r ≥ 1,

then (q, r) = (1, 1) or (q, r) = (2, 1). However in these respective cases, one has W ∼= Dp+3

and W ∼= Ep+4.
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To complete the proof of Theorem 4.1, it remains to be shown that the groups En, Fn,

and Hn are FC-finite. Continuing the notation of Section 3, given a heap P and s ∈ S,

let s(i) denote the ith greatest vertex of P with label s, relative to the partial order.

Lemma 4.2. Let W = An and s ∈ S. If s has degree one in Γ (or n = 1), then there is

at most one occurrence of s in any reduced word for any fully commutative w ∈W .

Proof. Let P be the heap of some fully commutative w ∈ W in which two or more

vertices are labeled s. Clearly n ≥ 2, so there is a unique t ∈ S such that m(s, t) = 3. It

follows that the convex subposet Q = {j ∈ P : s(2) < j < s(1)} of P is the heap of some

fully commutative member w′ of the parabolic subgroup of type A generated by S − {s}.
Since Q is nonempty (Proposition 2.3(b)), it follows that at least one member of Q covers

s(2) and at least one is covered by s(1). The labels of such elements cannot commute

with s, and hence must be t. However by induction with respect to n, every reduced word

for w′ has at most one occurrence of t. Thus in fact Q must consist of a single vertex with

label t; given that w is fully commutative, this contradicts Proposition 2.3(a). □

Suppose that the parabolic subgroup of W generated by some J ⊂ S is of type A. If

there is a unique s ∈ J and a unique t ∈ S − J such that m(s, t) ≥ 3, and if moreover s is

an “end node” (i.e., |J | = 1 or s has degree one relative to J), then we will say that J is

a branch of S, with s and t being the points of contact. If m(s, t) = 3, the branch will be

said to be simple.

Lemma 4.3. Let J be a branch of S with points of contact s ∈ J and t ∈ S−J . If P is

the heap of some fully commutative w ∈ W , then for each i > 1 such that t(i) is defined,

there is at most one vertex j of P with label s such that t(i) < j < t(i−1) in P . In that

case, the chain t(i) < j < t(i−1) is unrefinable.

Proof. Let t(i) = j0 < j1 < · · · < jm = t(i−1) be an unrefinable chain of P with at least

one member having label s. The label sequence corresponding to j0, . . . , jm must form a

path in Γ from t to t with no intermediate vertex of label t and at least one vertex with

label s. Given that J is a branch of S, this is possible only if j1 and jm both have label s.

It follows that Qi = {k ∈ P : t(i) < k < t(i−1)} is the heap of some fully commutative

member of WJ , a Coxeter group of type A. However by Lemma 4.2, any such heap can

have at most one vertex with label s, so j1 = jm and m = 1. □

Lemma 4.4. Let J be a simple branch of S with points of contact s ∈ J and t ∈ S−J .

If P is the heap of some fully commutative w ∈ W and there is an unrefinable chain

i1 < j1 < i2 < j2 < · · · < im+1 in P such that i1, . . . , im+1 have label t and j1, . . . , jm

have label s, then m ≤ |J |.
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Proof. Proceed by induction on m, the case m = 1 being trivial. We note that J − {s}
is also a simple branch of S, with the points of contact being s and some s′ ∈ J − {s}.
By Proposition 2.3, the chain j1 < i2 < j2 cannot be convex, so there must exist some

other vertex k of P such that j1 < k < j2, with k covering j1. Since J is a branch, the

only generators not commuting with s are t and s′, so this is possible only if the label of k

is s′. However in that case, Lemma 4.3 implies that the chain j1 < k < j2 is unrefinable.

Iterating this argument, we obtain an unrefinable chain j1 < k1 < j2 < k2 < · · · < jm in

P such that k1, . . . , km−1 have label s′. Hence by the induction hypothesis, we must have

m− 1 ≤ |J | − 1. □

Proof that Hn is FC-finite. For W = Hn, there exist generators s, t ∈ S such that

m(s, t) = 5 and S−{t} is a branch, with the points of contact being s and t. Now suppose

that P is the heap of some fully commutative w ∈ Hn, and let i1 < · · · < im be the

vertices of P with label t. Since s is the only generator that does not commute with t,

Lemma 4.3 implies that there is an unrefinable chain i1 < j1 < i2 < j2 < · · · < im in

P such that j1, . . . , jm−1 have label s. Now by Proposition 2.3, i1 < j1 < i2 < j2 < i3

cannot be a convex chain in P . On the other hand, there is a unique s′ ∈ S − {s, t} that
does not commute with s and there is no such vertex that does not commute with t. It

follows that there must be some vertex k ∈ P with label s′ such j1 < k < j2. Iterating this

argument, we obtain the existence of a chain j1 < k1 < j2 < k2 < · · · < jm−1 in P in which

k1, . . . , km−2 have label s′. By Lemma 4.3, this chain must be unrefinable. Furthermore,

since S−{s, t} is a simple branch of S of size n−2, Lemma 4.4 implies that m−2 ≤ n−2.

In other words, every fully commutative w ∈ Hn uses the generator t at most n times.

Thus any such element can be expressed in the form w0tw1tw2 · · · twm, where m ≤ n and

each wi belongs to the (finite) parabolic subgroup generated by S − {t}. □

Proof that Fn is FC-finite. Let s, t ∈ S denote the two generators of W = Fn with

m(s, t) = 4, and let t′ ∈ S denote the end node with m(t, t′) = 3 and the property that

{t′} is a branch of S. Now suppose that P is the heap of some fully commutative w ∈ Fn.

We first claim that for each i such that t(i+1) occurs in P , there must exist a vertex labeled

s in the convex subposet Qi = {k ∈ P : t(i+1) < k < t(i)}. Otherwise, Qi is the heap of

some fully commutative w′ in the parabolic subgroup generated by S − {s, t}. However,

the only member of S − {s, t} that does not commute with t is t′, so by Lemma 4.3, Qi

must consist of a singleton vertex with label t′. This contradicts Proposition 2.3, so the

claim follows.

Secondly, we claim that Qi and Qi+1 cannot both contain vertices with label t′. Oth-

erwise, there would exist a chain t(i+2) < k1 < t(i+1) < k2 < t(i), necessarily unrefinable
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(Lemma 4.3), in which k1 and k2 both have label t′. However, {t′} is a simple branch of S,

so this contradicts Lemma 4.4.

Let i1 < · · · < im denote the vertices of P with label t. By the first claim, there is

a chain i1 < j1 < i2 < j2 < · · · < im in P such that j1, . . . , jm−1 have label s. By

Lemma 4.3, this chain must be unrefinable. By the second claim, there is either no vertex

k of P with label t′ such that i1 < k < i2 or else no such vertex with i2 < k < i3. If the

former holds, consider the chain i1 < j1 < i2 < j2; if the latter, consider j1 < i2 < j2 < i3.

By Proposition 2.3, neither chain can be convex. Since every generator commutes with

either s or t, and we have eliminated the possibility of a vertex labeled t′ between i1 and i2

(the former case) or between i2 and i3 (the latter case), the only remaining possibility is

that there is a vertex k such that j1 < k < j2, with the label of k being a generator

not commuting with s, other than t. Note there is a unique generator, say s′, with this

property. Note also that S − {s, t, t′} is a simple branch of S, with the points of contact

being s and s′.

By iterating this argument, we obtain a chain j1 < k1 < j2 < k2 < · · · < jm−1 in P

with the property that k1, . . . , km−2 have label s′. By Lemma 4.3, this chain must be

unrefinable. Furthermore, since S − {s, t, t′} is a simple branch, Lemma 4.4 implies that

m−2 ≤ n−3. In other words, every fully commutative w ∈ Fn uses the generator t at most

n−1 times. Thus any such element can be expressed in the form w0tw1tw2 · · · twm, where

m < n and each wi belongs to the (finite) parabolic subgroup generated by S − {t}. □

Proof that En is FC-finite. We can label the generators ofW = En so that t has degree 3

in Γ, and s, s′, s′′ are the generators adjacent to t. We can arrange the labels so that there

are (simple) branches of sizes n− 4, 2 and 1, with points of contact t and (respectively) s,

s′ and s′′. Now suppose that P is the heap of some fully commutative w ∈ En. Assuming

that t(i+1) occurs in P , consider the convex subposet Qi = {k ∈ P : t(i+1) < k < t(i)}
of P . The possible labels of elements covering t(i+1) are s, s′, s′′. Since each of them is a

point of contact for a branch at t, Lemma 4.3 implies that each such element must also

be covered by t(i). Since Proposition 2.3 implies that Qi cannot be a singleton, there are

three remaining possibilities:

(a) Qi is a tripleton, with vertices labeled s, s′, and s′′.

(b) Qi is a doubleton, with vertices labeled s and s′.

(c) Qi is a doubleton, with vertices labeled s and s′′.

(d) Qi is a doubleton, with vertices labeled s′ and s′′.

Note that the members of Qi are incomparable in P .

Given that there are m occurrences of the label t in P , we can construct a word α
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of length m − 1 in the alphabet {a, b, c, d}, according to the type of each subinterval

Q1, . . . , Qm−1. Since {s′′} is a simple branch of S, Lemma 4.4 implies that there can

be no subword of α of the form xy, where x, y ∈ {a, c, d}. Furthermore, we claim that

the letter d can appear only at the beginning or end of α. Otherwise, the only possible

subword of the form xdy that avoids the previously forbidden subwords of length 2 is bdb.

However if this occurs, then for some i, each of Qi, Qi+1, Qi+2 contain vertices labeled s′,

contradicting Lemma 4.4 and the fact that there is a simple branch of size 2 connecting

s′ and t.

Since d is the only interval-type omitting vertices labeled s, it follows that Q2, . . . , Qm−2

must each contain a vertex labeled s. Since there is a simple branch of size n−4 connecting

s and t, Lemma 4.4 implies that m−3 ≤ n−4. In other words, the generator t can appear

at most n− 1 times in any fully commutative w ∈ En. Thus any such w can be expressed

in the form w0tw1tw2 · · · twm, where m < n and each wi belongs to the (finite) parabolic

subgroup generated by S − {t}. □

5. Fully commutative quotients

By Theorem 3.2, we know that the order ideal (with respect to ≤R) of fully commuta-

tive elements of W is generated by the fully commutative parts of the maximal parabolic

quotients W ⟨s⟩ for s ∈ S. Thus to a large extent, the task of determining all fully commu-

tative elements of W reduces to the corresponding question for maximal quotients. In the

case of the symmetric groups, the situation is particularly simple, since it is known (and it

also follows from what will be demonstrated below) that every member of every maximal

quotient is fully commutative. This raises the question: Which parabolic quotients of

Coxeter groups (not necessarily maximal) have the property that every member is fully

commutative? As we shall see, apart from degenerate cases, the answer to this question

also turns out to be the answer to several very natural order-theoretic questions about

parabolic quotients.

Let J ⊂ S. The quotient W J will be said to be minuscule if W is (isomorphic to)

a finite Weyl group and the subgroup WJ is the stabilizer of a minuscule weight λ. (A

nonzero weight λ is minuscule if there is a representation of a semisimple Lie algebra with

Weyl group W whose set of weights is the W -orbit of λ.) The classification of minuscule

weights is well-known and can be found in Exercise VI.4.15 of [B], for example. Assuming

that W is irreducible, the pairs (W,WJ) such that the quotient W J is minuscule are as

follows:

1. W ∼= An; J = S − {s} for any s ∈ S.

2. W ∼= Bn; WJ
∼= Bn−1 or An−1.
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3. W ∼= Dn; WJ
∼= Dn−1 or An−1.

4. (W,WJ) ∼= (E6, D5) or (E7, E6).

Note that all irreducible minuscule quotients are also maximal quotients.

Theorem 5.1. Assume that W is irreducible. If J is a proper subset of S, then every

member of W J is fully commutative if and only if one of the following is true:

(a) Every edge of Γ has infinite weight (i.e., m(s, t) ≥ 3⇒ m(s, t) =∞).

(b) W J is minuscule.

(c) (W,WJ) ∼= (H3, I2(5)) or (I2(m), A1).

Proof. First, we show that properties (a)–(c) are each sufficient to imply that every

member of W J is fully commutative. Indeed, if (a) holds, then the only braid relations

involve pairs of commuting generators, and hence everymember ofW is fully commutative.

If W = I2(m), then there is only one member of W that is not fully commutative; namely,

the longest element w0. It has (right) descent set S, and hence does not belong to W J

unless J = ∅.

In case W ∼= H3, label the generators s1, s2, s3 so that m(s1, s2) = 5 and m(s2, s3) = 3.

Also, set J = {s1, s2}, so that WJ
∼= I2(5). Now consider the heap P of

s = (s3, s2, s1, s2, s3, s1, s2, s1, s2, s3)

depicted in Figure 9. Using only Proposition 2.3, it is clear that P is the heap of some fully

commutative w ∈W . Furthermore, since the unique maximal element of P has label 3, we

have w ∈W J . Bearing in mind that the longest elements of H3 and I2(5) have respective

lengths 15 and 5, it follows that w must be wJ
0 (the longest element of W J), since it has

length 15 − 5 = 10. However, wJ
0 is the unique maximal element of W J with respect to

≤L (Proposition 1.6), so every member of W J is fully commutative (Proposition 1.5).

Now consider (b); i.e., we suppose that W is a finite Weyl group with a crystallographic

root system Φ embedded in some real Euclidean space E with inner product (· , ·), simple

roots ∆ ⊂ Φ, weight lattice Λ ⊂ E, and WJ is the stabilizer of some minuscule weight

λ ∈ Λ. For each α ∈ Φ, let sα ∈ W denote the reflection on E fixing the hyperplane

perpendicular to α, so that S = {sα : α ∈ ∆}.
Temporarily, let us discard the hypothesis that λ is minuscule, and instead merely

assume that λ ∈ E belongs to the closure of the fundamental chamber (i.e., (λ, α) ≥ 0 for

all α ∈ ∆). In this case, one knows (e.g., [H, §1.12]) that the stabilizer of λ is WJ , where

J = {sα ∈ S : (λ, α) = 0}.

Lemma 5.2. Given w ∈W J and α ∈ ∆, we have sαw <L w if and only if (wλ, α) < 0.
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Proof. If sαw <L w, then it is necessarily the case that sαwλ 6= wλ; otherwise, sαw

would be a member of wWJ , contradicting the fact that w is the shortest member of its

coset. Hence, (wλ, α) 6= 0. However since ℓ(sαw) < ℓ(w), it follows that w−1α must be a

negative root (e.g., [H, §1.6]). On the other hand, λ is in the closure of the fundamental

chamber, so we must have (wλ, α) = (λ,w−1α) < 0. Conversely, if (λ,w−1α) < 0, then

w−1α is a negative root, so ℓ(sαw) < ℓ(w) (again [H, §1.6]), so sαw <L w. □

Now suppose that w ∈W J is not fully commutative. By replacing w with some w′ <L w

if necessary (cf. Propositions 1.1 and 1.5), we can assume that w has a reduced expression

of the form x0y, where x0 is the element of length m(s, t) in the parabolic subgroup

generated by some {s, t} ⊂ S such that m(s, t) ≥ 3. Now let α, β ∈ ∆ denote the simple

roots corresponding to s and t, so that s = sα and t = sβ . Since ℓ(sx0) = ℓ(tx0) < ℓ(x0),

it follows that sw, tw <L w, and hence by Lemma 5.2, (wλ, α) < 0 and (wλ, β) < 0.

For γ ∈ Φ, let γ∨ = 2γ/(γ, γ) denote the corresponding co-root. Since Φ is assumed to

be crystallographic, it follows that (wλ, α∨) and (wλ, β∨) are negative integers. Further-

more, since s and t generate an irreducible Weyl group of rank 2, it follows that there is

at least one root in the positive integral span of α and β, and the same is true of α∨ and

β∨ relative to the co-root system Φ∨. That is, there exist integers c1, c2 > 0 and γ ∈ Φ

such that γ∨ = c1α
∨ + c2β

∨. Thus we obtain

(wλ, γ∨) = c1(wλ, α
∨) + c2(wλ, β

∨) ≤ −c1 − c2 ≤ −2.

However, by Exercise VI.1.24 of Bourbaki [B], one knows that if λ is minuscule, then

(wλ, γ∨) ∈ {0,±1} for all γ ∈ Φ and w ∈ W . This contradicts the hypothesis that W J

contains elements that are not fully commutative.

We remark that in Proposition 10 of [F], Fan gives a different proof that every member

of a simply-laced minuscule quotient is fully commutative.

Turning to the converse, we derive a series of conditions that are necessary for every

member of W J to be fully commutative, and we show that these conditions collectively

eliminate all parabolic quotients other than those listed in (a)–(c). To begin with, we will

assume that Γ has at least one edge of finite weight (since otherwise (a) applies).

(1) Every edge of Γ has finite weight. Otherwise, given s ∈ S − J , there are three

possibilities: (i) there is a pair t, u ∈ S such that m(s, t) = ∞ and 3 ≤ m(s, u) < ∞, or

there is a path s1, s2, . . . , sn = s in Γ such that (ii) m(s1, s2) =∞ and m(s2, s3) = m <∞,

or (iii) m(s1, s2) = m < ∞ and m(s2, s3) = ∞. In these respective cases, we claim that

the following are reduced words for some member of W J that is not fully commutative:

(i) s = (〈s, u〉m, t, s), where m = m(s, u).
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(ii) s = (〈s2, s3〉m, s1, s2, . . . , sn).

(iii) s = (〈s1, s2〉m, s3, s2, s3, . . . , sn).

In each case, it is straightforward to check that s is indeed a reduced word for some w ∈W .

In fact, one finds that R(w) has either two or three members, depending on whether t and

u commute (case (i)) or s1 and s3 commute (cases (ii) and (iii)). It is also transparent

that w is not fully commutative. Since each of the two or three members of the braid

equivalence class of s ends with s, it follows that w ∈W J and the claim follows.

(2) W J is a maximal quotient. Otherwise, let s = s1, . . . , sn = t be a path in Γ that

connects s, t ∈ S − J , and consider the word

s = (〈s1, s2〉m, s3, . . . , sn), (∗)

where m = m(s1, s2). (We may assume m < ∞, by (1).) It is easy to see that s is a

reduced word for some w ∈W that is not fully commutative. Furthermore, every member

of the braid equivalence class of s ends with either t = sn or s = s1, and the latter occurs

if and only if s1 commutes with s3, . . . , sn. Hence DR(w) ⊂ {s, t} and w ∈W J .

Henceforth, we may assume that J = S−{s} for some fixed s ∈ S. In this situation, we

have w ∈W J if and only if DR(w) = {s} or w = 1. Thus we can reformulate our objective

as one of identifying conditions that force the existence of w ∈W with DR(w) = {s} that
are not fully commutative.

Lemma 5.3. Let I ⊂ S−{s}, and suppose there is a path in Γ from some t ∈ I to s that

meets I only at t. If there is some w ∈WI withDR(w) = {t} that is not fully commutative,

then there is some w′ ∈W with DR(w
′) = {s} that is not fully commutative.

Proof. Let t = s1, . . . , sn = s be the given path in Γ, and suppose that w ∈ WI is not

fully commutative and DR(w) = {t}. Consider w′ = ws2s3 · · · sn. Every reduced word for
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w ends with t. Furthermore, since s2, . . . , sn do not appear in w and si does not commute

with si+1, it follows that the expression ws2s3 · · · sn is reduced, and every reduced word

for w′ consists of a reduced word for w followed by (s2, . . . , sn). Therefore w′ is not fully

commutative and DR(w
′) = {s}. □

(3) Γ is acyclic. If not, then by Lemma 5.3 we can assume that there is a circuit of Γ

through s. Assuming that s1, . . . , sn = s are the vertices of a minimal circuit, so that si

and si+1 do not commute for 1 ≤ i ≤ n (subscripts taken modulo n), consider the word s

of (∗) and the corresponding w ∈ W . In (2), we noted that DR(w) ⊂ {s1, sn}, and that

s1 ∈ DR(w) if and only if s1 commutes with s3, . . . , sn. However in this case, s1 and sn

do not commute, so DR(w) = {sn} = {s}.
(4) Γ has no vertex of degree ≥4, and at most one vertex of degree 3. Otherwise, by

following a path from s to a vertex of degree ≥ 3, we can use Lemma 5.3 to reduce to

a configuration in which there are generators s1, . . . , sn ∈ S that induce a subgraph of Γ

isomorphic to the one in Figure 3(b), with s = s2. (The case n = 4 occurs when there is

a vertex of degree ≥ 4.) In that case, consider

s = (〈s1, s2〉m, s3, . . . , sn−2, sn−1, sn, sn−2, . . . , s3, s2),

where m = m(s1, s2). By examining the heap of s and the equivalent word obtained by

applying the braid relation 〈s2, s1〉m ≈ 〈s2, s1〉m, one can see that s is a reduced word for

some w ∈ W that is not fully commutative. Both heaps have a maximum element with

label s = s2, so DR(w) = {s}.
(5) Either W is of type A, or s is an end node. If Γ has a vertex of degree 3 and s has

degree ≥ 2, then there is a configuration in Γ isomorphic to the one in (4). Otherwise,

Γ is a path. Assuming W 6= An and that s has degree 2, it follows that there is a path

s1, . . . , sn in Γ such that n ≥ 3, m(sn−1, sn) ≥ 4, and s = s2. In that case, consider

s = (〈s1, s2〉m, s3, . . . , sn−1, sn, sn−1, . . . , s3, s2),

where m = m(s1, s2). By reasoning similar to (4), s is a reduced word for some w ∈W ⟨s⟩

that is not fully commutative.

Since every maximal quotient of W = An is minuscule, for the remainder of the proof

we may assume that W is not of type A, and hence also that s is an end node of Γ.

(6) Γ cannot have both a vertex of degree 3 and an edge of weight ≥4. Otherwise, by

following a path from s we will reach either a vertex of degree 3 or an edge of weight ≥ 4.

If the former occurs first, then by Lemma 5.3, we can reduce to a configuration of the

type that was eliminated in (5). If the latter occurs, we can use Lemma 5.3 to reduce to a
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configuration of generators s1, . . . , sn ∈ S that induce a subgraph of Γ isomorphic to the

one in Figure 3(b), with s = s1 and m = m(s1, s2) ≥ 4. However in that case,

(〈s1, s2〉m, s3, . . . , sn−2, sn−1, sn, sn−2, . . . , s2, s1)

is a suitable reduced word for some w ∈W ⟨s⟩ that is not fully commutative.

(7) Γ has at most one edge of weight ≥4. If Γ has two or more edges of weight ≥ 4,

then Γ must be a path and s must be an end node, thanks to (5) and (6). By following

the path from s, we can use Lemma 5.3 to reduce to the case of a path s = s1, s2, . . . , sn

in Γ such that m = m(s1, s2) ≥ 4 and m(sn−1, sn) ≥ 4. However in that case,

(〈s1, s2〉m, s3, . . . , sn−1, sn, sn−1, . . . , s3, s2, s1)

is a suitable reduced word for some w ∈W ⟨s⟩ that is not fully commutative.

In the following, we will continue to construct explicit reduced words for members of

W that are not fully commutative; however, in most of the remaining cases, the structure

of the commutativity and braid equivalence classes are sufficiently complex that it is

easier to deduce what is needed by examining heaps. More specifically, in (most of) the

remaining constructions, we present a pair of heaps, and it is left to the reader to check

the following: (i) Each heap has exactly one convex chain with alternating labels i, j, i, . . .

of cardinality m = m(si, sj) ≥ 3 for some pair of generators si, sj . (ii) The braid relation

〈si, sj〉m ≈ 〈sj , si〉m, when applied to a linear extension of each heap, interchanges the

two heaps. (iii) Both heaps have a maximum element, and the label of this element

corresponds to s. These properties collectively imply that some w ∈W ⟨s⟩ has exactly two

commutativity classes and hence cannot be fully commutative.

(8) An edge of weight ≥4 must be adjacent to an end node. Otherwise, by Lemma 5.3 we

can reduce to a case in which there is a path s = s1, s2, s3, s4 with m(s2, s3) ≥ 4. By (7),

we may also assume that m(s1, s2) = 3. However in that case, the pair of braid-related

heaps in Figure 10 prove the existence of some w ∈W ⟨s⟩ that is not fully commutative.

Suppose now that Γ is a path, say s1, s2, . . . , sn. By (5), (7) and (8), we may assume

that m = m(s1, s2) ≥ 4, all other edge weights are 3, and s = s1 or s = sn. If n = 2 then

W is a dihedral group (a case covered by (c)), so assume n ≥ 3. We may also assume

m ≥ 5, since otherwise m = 4, W = Bn, and both end nodes correspond to minuscule

quotients. If s = s1, m ≥ 5 and n ≥ 3, then w = s2s3s2s1s2s1 is a member of W ⟨s⟩ that

is not fully commutative, so we can assume s = sn. If n = 3 and m = 5, then W = H3

and WJ = I2(5) (a case covered by (c)). If n = 3 and m ≥ 6, then w = s2s3s2s1s2s1s2s3

is a member of W ⟨s⟩ that is not fully commutative. With Lemma 5.3, this eliminates all
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cases with n ≥ 3 and m ≥ 6. Finally, if n = 4 and m = 5 (i.e., W = H4, WJ = H3), then

the pair of braid-related heaps in Figure 11 prove the existence of some w ∈ W ⟨s⟩ that is

not fully commutative. With Lemma 5.3, this eliminates all cases with n ≥ 4 and m = 5.

The only remaining possibility is that W = Y (p, q, r) (see Figure 4), and that s is the

end node of (say) the branch of length p. Continuing the labeling established in Section 4,

we let s0 denote the vertex of degree 3, and let s1, . . . , sp; s
′
1, . . . , s

′
q; s

′′
1 , . . . , s

′′
r denote the

generators along the three branches of Γ. If q = r = 1, then W = Dn and W J is minuscule.

On the other hand, if q, r ≥ 2, then the braid-related heaps in Figure 12 provide a member

of W J that is not fully commutative for the case p = 1, and hence we may also eliminate

p > 1 (Lemma 5.3). For what remains, we may thus assume q ≥ 2 and r = 1. Now if p = 1

then W = Dn and W J is again minuscule, so we may further assume that p ≥ 2. If q ≥ 3,

then the heaps in Figure 13 provide a member of W J that is not fully commutative for

the case p = 2, and hence we may also eliminate p ≥ 3 (again Lemma 5.3). Thus q = 2.

If p = 2, then W = E6 and WJ = D5, and if p = 3 then W = E7 and WJ = E6, both of

which yield minuscule quotients. All that remains is p ≥ 4, q = 2, and r = 1; however in

that case, Lemma 5.3 and the heaps in Figure 14 prove that W J has members that are

not fully commutative. □
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6. Consequences for the Bruhat order

Let T = {wsw−1 : w ∈ W, s ∈ S} denote the set of (abstract) reflections in W . The

Bruhat order (e.g., [Bj], [H]) may be defined as the partial ordering ≤B on W generated

by the transitive closure of the relations

w <B wt whenever ℓ(w) < ℓ(wt)

for all w ∈ W , t ∈ T . We note that there is no distinction between a “left” and “right”

Bruhat order, since tw = w(w−1tw) >B w if and only if ℓ(tw) > ℓ(w). It is also clear that

the Bruhat order refines both the left and right weak orders; i.e., x ≤LR y ⇒ x ≤B y for

all x, y ∈ W . However, unlike the weak ordering, the fully commutative part of W and

the parabolic quotients W J need not be order ideals of (W,≤B).

In [P], Proctor classifies the parabolic quotients of finite Weyl groups whose Bruhat

orderings are lattices; aside from the minuscule quotients, the only other examples occur

in the case W = G2.
3 Also, it is implicit in [P] and explicit for the symmetric group

case in [Bj, (4.9)] that the Bruhat ordering and weak ordering of a minuscule quotient are

3However in [P], Proctor also remarks without proof that among the finite Coxeter groups, the Bruhat

order on WJ with (W,WJ ) ∼= (H3, A2) is a lattice. Theorem 6.1 shows that this is incorrect.
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identical. The following result characterizes the parabolic quotients of arbitrary Coxeter

groups with these properties.

Theorem 6.1. If W is irreducible and J is a proper subset of S, then the following

are equivalent.

(a) (W J ,≤B) is a lattice.

(b) (W J ,≤B) is a distributive lattice.

(c) (W J ,≤L) is a distributive lattice.

(d) (W J ,≤B) = (W J ,≤L).

(e) W J is minuscule, or (W,WJ) ∼= (H3, I2(5)) or (I2(m), A1) (possibly m =∞).

Proof. First we show that each of the quotients listed in (e) satisfies properties (a)–(d).

In case W is a (possibly infinite) dihedral group and J is a singleton, it is easy to check

that (W J ,≤L) is a total order. In particular, it is a distributive lattice. Since the Bruhat

order refines the weak order, it follows that the two orders must coincide. Otherwise, in

the remaining cases W J is a quotient of a finite group, and thus (Proposition 1.6) has a

unique maximal element with respect to ≤L. By Theorem 5.1, every member (including

the top element) of W J is fully commutative, so by Theorem 2.2 it follows that (W J ,≤L)

is a distributive lattice. To prove that the remaining properties hold, it thus suffices to

show that the Bruhat order and weak order coincide on W J .

In case W = H3 and WJ = I2(5), Theorem 2.2 implies that (W J ,≤L) is isomorphic to

the lattice of order ideals of the heap in Figure 9. One can see directly that this lattice has

exactly two incomparable elements; namely, w1 = s1s2s1s2s3 and w2 = s3s2s1s2s3 (using

the labels for generators introduced in Section 5). Since these two elements have the same

length, they must also be incomparable in the Bruhat order. Thus the two orders coincide

in this case.

Now consider the minuscule case. Continuing our previous notation, let E, ∆, and Φ

be as they were defined in Section 5, and let λ be a minuscule weight with stabilizer WJ .

Define r to be the linear functional on E satisfying r(α) = 1 for all α ∈ ∆.

Lemma 6.2. For w ∈W J , we have ℓ(w) = r(λ)− r(wλ).

Proof. The case ℓ(w) = 0 is obvious, so assume ℓ(w) ≥ 1 and choose α ∈ ∆ so that

sαw <L w. By Lemma 5.2, it follows that (wλ, α) < 0, so by Exercise VI.1.24 in [B], we

have (wλ, α∨) = −1. Hence sα(wλ) = wλ + α, so r(sαwλ) = r(wλ) + 1 and the result

follows by induction with respect to ℓ(w). □

Now let t ∈ T , w ∈W be such that tw <B w is a covering relation. We have t = sα for

some (positive) α ∈ Φ. It is necessary that twλ 6= wλ; otherwise, tw would be a shorter
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member of the coset containing w. Therefore (wλ, α) 6= 0, and hence by the Bourbaki

exercise (ibid.), (wλ, α∨) = ±1. It follows that twλ = wλ± α, so r(α) = ℓ(w)− ℓ(tw), by

Lemma 6.2. However, the Bruhat order is graded by the length function (e.g., [H, §5.11]),
so the only covering relations involve pairs with a length difference of one. It follows that

r(α) = 1, so α is a simple root and tw <L w. Thus every covering relation of the Bruhat

order is also a covering relation of the weak order, so the two coincide.

Turning to the converse, we show that if W J is any of the quotients not listed in (e),

then none of the properties (a)–(d) hold. By Theorem 5.1, there are two possibilities:

either W J contains elements that are not fully commutative, or W has rank ≥ 3 and every

edge-weight of Γ is infinite.

Suppose that w ∈ W J is not fully commutative. By replacing w with some w′ <L w

if necessary, we can assume that there is a reduced expression of the form w = x0y,

where x0 is the element of length m(s, t) in the parabolic subgroup generated by some

{s, t} ⊂ S such that m(s, t) ≥ 3. Consider the subinterval of (W J ,≤L) from y to w. By

Proposition 1.3, this interval is order-isomorphic to the weak ordering of the parabolic

subgroup generated by {s, t} (cf. Figure 1(a)). This interval is not a distributive lattice,

so (c) does not hold. (This fact is also an immediate consequence of Theorem 2.2, given

that W J contains elements that are not fully commutative.) Furthermore, with respect

to the Bruhat order, this interval contains additional relations, such as sy <B sty and

ty <B tsy (cf. Figure 1(b)), so (d) does not hold. Since we also have sy <B tsy and

ty <B sty, it follows that sy and ty have no least upper bound relative to the Bruhat

order, so and (a) and (b) do not hold.

The remaining possibility is that W has rank ≥ 3 and every edge of Γ has infinite

weight. It follows that there must exist generators s, t, u ∈ S such that s 6∈ J , and either

(1) m(s, t) = m(s, u) = ∞ or (2) m(s, t) = m(t, u) = ∞. In case (1), consider the

elements uts, sts, suts, and usts. It is easy to see that every reduced word for these

elements ends with s, so they all belong to W J . Secondly, it is not hard to show, using

the subword property (e.g., [H, §5.10]) or otherwise, that the two elements of length four

are both upper bounds for the two elements of length three with respect to the Bruhat

order, so (a) and (b) do not hold. The fact that sts and suts are unrelated with respect

to the weak order shows that (d) does not hold. We also claim that the elements sts and

uts have no upper bounds relative to ≤L. By definition, the upper bounds for sts are the

reduced expressions of the form wsts. Since the only braid relations in W involve pairs

of commuting generators, it follows that every reduced word for wsts must have at least

two occurrences of s following any occurrence of u. In particular, no such reduced word

can end with (u, t, s), so wsts cannot be an upper bound for uts. Hence (W J ,≤L) is not
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a lattice and (c) fails.

In case (2), consider the elements tuts, suts, tsuts, and stuts. Again, it is easy to see

that every reduced word for these elements ends with s, so they all belong to W J . Using

the subword property, one sees that both elements of length five are upper bounds for both

elements of length four with respect to the Bruhat order, so (a) and (b) fail. Also, tuts

and tsuts are unrelated with respect to ≤L, so (d) fails. Finally, we argue that tuts and

suts have no upper bounds relative to ≤L. Indeed, if x = wsuts is reduced, then every

reduced word for x must have exactly one t occurring between the last two occurrences

of s. In particular, no such reduced word can end with (t, u, t, s), so x cannot be an upper

bound for tuts. Hence (W J ,≤L) is not a lattice and (c) fails. □
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